Probability, homework 9, due November 22nd.

Some exercises are from A first course in probability, ninth edition, by Sheldon Ross.

Exercise 1. The joint density of X and Y is given by $f(x, y)=\frac{e^{-y}}{y}, 0<x<y$, $0<y<\infty$. Compute $\mathbb{E}\left(X^{3} \mid Y=y\right)$.

Exercise 2. Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent and identically distributed positive random variables. For $k \leq n$, find

$$
\mathbb{E}\left(\frac{\sum_{i=1}^{k} X_{i}}{\sum_{i=1}^{n} X_{i}}\right)
$$

Exercise 3. Let X_{1}, X_{2}, \ldots be a sequence of independent and identically distributed continuous random variables. Let $N \geq 2$ be such that $X_{1} \geq X_{2} \geq \cdots \geq$ X_{N-1} and $X_{N-1}<X_{N}$. That is, N is the point at which the sequence stops decreasing. Show that $\mathbb{E}(N)=e$.

Hint: First find $\mathbb{P}(N \geq n)$.

Exercise 4. Let X be a random variable with density $f_{X}(x)=(1-|x|) \mathbb{1}_{(-1,1)}(x)$. Show that its characteristic function is

$$
\phi_{X}(u)=\frac{2(1-\cos u)}{u^{2}} .
$$

Exercise 5. Let X have density $\frac{1}{2} e^{-|x|}$. What is the characteristic function of X ?
Exercise 6. Let X_{λ} be a real random variable, with Poisson distribution with parameter λ. Calculate the characteristic function of X_{λ}. Conclude that $\left(X_{\lambda}-\lambda\right) / \sqrt{\lambda}$ converges in distribution to a standard Gaussian, as $\lambda \rightarrow \infty$.

Exercise 7. Show that

$$
\lim _{n \rightarrow \infty} e^{-n} \sum_{k=0}^{n} \frac{n^{k}}{k!}=\frac{1}{2}
$$

