Probability, homework 1, due February 12.

Exercise 1.

(i) A family has 5 children, consisting of 3 girls and 2 boys. Assuming that all birth orders are equally likely, what is the probability that the 3 eldest children are girls?
(ii) How many ways are there to split 11 people into 3 teams, where one team has 2 people, one has 4 and the other 5 ?

Exercise 2. Prove that

$$
\binom{n+m}{r}=\binom{n}{0}\binom{m}{r}+\binom{n}{1}\binom{m}{r-1}+\cdots+\binom{n}{r}\binom{m}{0}
$$

Exercise 3. The following identity is known as Fermat's combinatorial identity:

$$
\binom{n}{k}=\sum_{i=k}^{n}\binom{i-1}{k-1}, n \geq k
$$

Give a combinatorial argument (no computations are needed) to establish this identity. Hint: Consider the set of numbers 1 through n. How many subsets of size k have i as their highest-numbered member?

Exercise 4. Proof of Stirling's formula. Using a trapezoidal approximation for the area under a curve, prove that

$$
\sum_{k=1}^{n} \log k=\left(n+\frac{1}{2}\right) \log n-n+c+\mathrm{o}(1)
$$

as $n \rightarrow \infty$, where c is a non-explicit constant.

