Probability, homework 12, due April 29.

Exercise 1. Kolmororov's maximal inequality and convergence of random series. Let $(X_n)_{n\geq 1}$ be a sequence of mutually independent random variables, on the same probability space, with expectation 0 and finite variance. Let $S_n = \sum_{\ell=1}^n X_{\ell}$. Prove that for any $\lambda > 0$,

$$\lambda^2 \mathbb{P}(\max_{1 \le k \le n} |S_k| \ge \lambda) \le \operatorname{Var}(S_n).$$

Prove that if $\sum_{\ell} \operatorname{Var}(X_{\ell}) < \infty$, then $(S_n)_{n>1}$ converges almost surely.

Exercise 2. Let Y be an integrable random variable on $(\Omega, \mathcal{A}, \mathbb{P})$ and \mathcal{G} a sub σ -algebra of \mathcal{A} . Show that $|\mathbb{E}(Y | \mathcal{G})| \leq \mathbb{E}(|Y| | \mathcal{G})$.

Exercise 3. Let Y be an integrable random variable on $(\Omega, \mathcal{A}, \mathbb{P})$ and \mathcal{G} a sub σ -algebra of \mathcal{A} . Suppose that $\mathcal{H} \subset \mathcal{G}$ is a sub σ -algebra of \mathcal{G} . Show that $\mathbb{E}(\mathbb{E}(Y \mid \mathcal{G}) \mid \mathcal{H}) = \mathbb{E}(Y \mid \mathcal{H})$.

Exercise 4. Let $(X_n)_{n\geq 1}$ be independent such that $\mathbb{E}(X_i) = m_i$, $\operatorname{var}(X_i) = \sigma_i^2$, $i \geq 1$. Let $S_n = \sum_{i=1}^n X_i$ and $\mathcal{F}_n = \sigma(X_i, 1 \leq i \leq n)$.

a) Find sequences $(b_n)_{n\geq 1}$, $(c_n)_{n\geq 1}$ of real numbers such that $(S_n^2+b_nS_n+c_n)_{n\geq 1}$ is a $(\mathcal{F}_n)_{n\geq 1}$ -martingale.

b) Assume moreover that there is a real number λ such that $e^{\lambda X_i} \in L^1$ for any $i \geq 1$. Find a sequence $(a_n^{(\lambda)})_{n\geq 1}$ such that $(e^{\lambda S_n - a_n^{(\lambda)}})_{n\geq 1}$ is a $(\mathcal{F}_n)_{n\geq 1}$ -martingale.

Exercise 5. Let $(X_k)_{k\geq 0}$ be i.i.d. random variables, $\mathcal{F}_m = \sigma(X_1, \ldots, X_m)$ and $Y_m = \prod_{k=1}^m X_k$. Under which conditions is $(Y_m)_{m\geq 1}$ a $(\mathcal{F}_m)_{m\geq 1}$ -submartingale, supermartingale, martingale?

Exercise 6. Let a > 0 be fixed, $(X_i)_{i \ge 1}$ be iid, \mathbb{R}^d -valued random variables, uniformly distributed on the ball B(0, a). Set $S_n = x + \sum_{i=1}^n X_i$.

a) Let f be a superharmonic function. Show that $(f(S_n))_{n\geq 1}$ defines a supermartingale.

b) Prove that if $d \leq 2$ any nonnegative superharmonic function is constant. Does this result remain true when $d \geq 2$?