Probability, homework 13, due May 6.

Exercise 1. Let $X_i, i \ge 1$, be iid random variables, $X_i \ge 0, E(X_i) = 1$. Prove that if $Y_n = \prod_{k=1}^n X_k$, $\mathcal{F}_n = \sigma(X_k, k \le n)$, $(Y_n)_{n \ge 0}$ is a (\mathcal{F}_n) -martingale. Prove that if $\mathbb{P}(X_1 = 1) < 1$, Y_n converges to 0 almost surely.

Exercise 2. Let $(\mathcal{F}_n)_{n\geq 0}$ be a filtration, $(X_n)_{n\geq 0}$ a sequence of integrable random variables with $\mathbb{E}(X_n | \mathcal{F}_{n-1}) = 0$, and assume X_n is \mathcal{F}_n -measurable for every n. Let $S_n = \sum_{k=0}^n X_k$. Show that $(S_n)_{n\geq 0}$ is a $(\mathcal{F}_n)_{n\geq 0}$ -martingale.

Exercise 3. Let T be a stopping time for a filtration $(\mathcal{F}_n)_{n\geq 1}$. Prove that \mathcal{F}_T is a σ -algebra.

Exercise 4. Let S and T be stopping times for a filtration $(\mathcal{F}_n)_{n\geq 1}$. Prove that $\max(S,T)$ and $\min(S,T)$ are stopping times.

Exercise 5. Let $S \leq T$ be two stopping times and $A \in \mathscr{F}_S$. Define $U(\omega) = S(\omega)$ if $\omega \in A$, $U(\omega) = T(\omega)$ if $\omega \notin A$. prove that U is a stopping time.

Exercise 6. Consider the random walk $S_n = \sum_{k=1}^{n} X_k$, the X_k 's being i.i.d., $\mathbb{P}(X_1 = X_k)$ 1) = $\mathbb{P}(X_1 = -1) = 1/2, \ \mathcal{F}_n = \sigma(X_i, 0 \le i \le n)$. Prove that $(S_n^2 - n, n \ge 0)$ is a (\mathcal{F}_n) -martingale. Let τ be a bounded stopping

time. Prove that $\mathbb{E}(S_{\tau}^2) = \mathbb{E}(\tau)$.

Take now $\tau = \inf\{n \mid S_n \in \{-a, b\}\}$, where $a, b \in \mathbb{N}^*$. Prove that $\mathbb{E}(S_{\tau}) = 0$ and $\mathbb{E}(S_{\tau}^2) = \mathbb{E}(\tau)$. What is $\mathbb{P}(S_{\tau} = -a)$? What is $\mathbb{E}(\tau)$?

Let $\tau' = \inf\{n \mid S_n = b\}$. Prove that $\mathbb{E}(\tau') = +\infty$.