Probability, homework 2, due February 12.

Exercise 1. Let $\left(\mathcal{G}_{\alpha}\right)_{\alpha \in A}$ be an arbitrary family of σ-algebras defined on an abstract space Ω. Show that $\cap_{\alpha \in A} \mathcal{G}_{\alpha}$ is also a σ-algebra.

Exercise 2. Let \mathcal{A} be a σ-algebra. Prove that if, for all $n \in \mathbb{N}, A_{n} \in \mathcal{A}$, then $\limsup _{n \rightarrow \infty} A_{n}$ and $\liminf \inf _{n \rightarrow \infty} A_{n}$ are in \mathcal{A} (these limiting events are defined in Jacod-Protter).

Exercise 3. Prove the Bonferroni inequalities: if $A_{i} \in \mathcal{A}$ is a sequence of events, then
(i) $\mathbb{P}\left(\cup_{i=1}^{n} A_{i}\right) \geq \sum_{i=1}^{n} \mathbb{P}\left(A_{i}\right)-\sum_{i<j} \mathbb{P}\left(A_{i} \cap A_{j}\right)$,
(ii) $\mathbb{P}\left(\cup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} \mathbb{P}\left(A_{i}\right)-\sum_{i<j} \mathbb{P}\left(A_{i} \cap A_{j}\right)+\sum_{i<j<k} \mathbb{P}\left(A_{i} \cap A_{j} \cap A_{k}\right)$.

Exercise 4. Prove whether the following sets are countable or not.
(i) All intervals in \mathbb{R} with rational endpoints.
(ii) All circles in the plane with rational radii and centers on the diagonal $x=y$.
(iii) All sequences of integers whose terms are either 0 or 1 .

Exercise 5. Let $\varnothing \subsetneq A \subsetneq B \subsetneq \Omega$ (these are strict inclusions). What is the σ algebra generated by $\{A, B\}$?

Exercise 6. Let $\left(s_{n}\right)_{n \geq 0}$ be a random walk. For $a \in \mathbb{Z}^{*}$, let $T_{a}=\inf \left\{n \geq 0: s_{n}=\right.$ $a\}$. Prove that $\mathbb{E}\left(T_{a}\right)=\infty$.

