Probability, homework 2, due February 12.

Exercise 1. Let $(\mathcal{G}_{\alpha})_{\alpha \in A}$ be an arbitrary family of σ -algebras defined on an abstract space Ω . Show that $\bigcap_{\alpha \in A} \mathcal{G}_{\alpha}$ is also a σ -algebra.

Exercise 2. Let \mathcal{A} be a σ -algebra. Prove that if, for all $n \in \mathbb{N}$, $A_n \in \mathcal{A}$, then $\limsup_{n\to\infty} A_n$ and $\liminf_{n\to\infty} A_n$ are in \mathcal{A} (these limiting events are defined in Jacod-Protter).

Exercise 3. Prove the Bonferroni inequalities: if $A_i \in \mathcal{A}$ is a sequence of events, then

(i) $\mathbb{P}(\cup_{i=1}^{n}A_i) \geq \sum_{i=1}^{n}\mathbb{P}(A_i) - \sum_{i < j}\mathbb{P}(A_i \cap A_j),$ (ii) $\mathbb{P}(\cup_{i=1}^{n}A_i) \leq \sum_{i=1}^{n}\mathbb{P}(A_i) - \sum_{i < j}\mathbb{P}(A_i \cap A_j) + \sum_{i < j < k}\mathbb{P}(A_i \cap A_j \cap A_k).$

Exercise 4. Prove whether the following sets are countable or not.

- (i) All intervals in \mathbb{R} with rational endpoints.
- (ii) All circles in the plane with rational radii and centers on the diagonal x = y.
- (iii) All sequences of integers whose terms are either 0 or 1.

Exercise 5. Let $\emptyset \subsetneq A \subsetneq B \subsetneq \Omega$ (these are strict inclusions). What is the σ -algebra generated by $\{A, B\}$?

Exercise 6. Let $(s_n)_{n\geq 0}$ be a random walk. For $a \in \mathbb{Z}^*$, let $T_a = \inf\{n \geq 0 : s_n = a\}$. Prove that $\mathbb{E}(T_a) = \infty$.