Probability, homework 3, due February 19th

Exercise 1. The probability that a male driver makes an insurance claim in any given year is 0.3 , while the probability that a female driver makes an insurance claim in any given year is 0.2 . Furthermore, claims by the same driver in successive years are independent events. We assume equal numbers of male and female drivers.

What is the probability that a randomly chosen driver makes a claim in the first year (event A)? What is the probability that a randomly chosen driver makes a claim in the first and second years (event B)?

What is $\mathbb{P}(B \mid A)$, the probability that a randomly chosen driver makes a claim in the second year, conditionally to the fact that he/she made one on the first year? How can you explain that it is different from $\mathbb{P}(A)$ although claims in successive years are independent? If you are the head of an insurance company and want one more client, would you prefer one who had a claim the previous year or the contrary?

Exercise 2. Let X be a geometric random variable. Prove the following memoryless property: for $i, j>0$,

$$
\mathbb{P}(X>i+j \mid X \geq i)=\mathbb{P}(X>j)
$$

Exercise 3. Suppose that Ω is an infinite set (countable or not), and let \mathcal{A} be the family of all subsets which are either finite or have finite complement. Prove that \mathcal{A} is not a σ-algebra.

Exercise 4. Let \mathcal{A} be a σ-algebra, \mathbb{P} a probability measure and $\left(A_{n}\right)_{n \geq 1}$ (resp. $\left(B_{n}\right)_{n \geq 1}$) be a sequence of events in \mathcal{A} which converges to A (resp. B). Assume that $\mathbb{P}(B)>0$ and $\mathbb{P}\left(B_{n}\right)>0$ for all n. Show that
(i) $\lim _{n \rightarrow \infty} \mathbb{P}\left(A_{n} \mid B\right)=\mathbb{P}(A \mid B)$;
(ii) $\lim _{n \rightarrow \infty} \mathbb{P}\left(A \mid B_{n}\right)=\mathbb{P}(A \mid B)$;
(iii) $\lim _{n \rightarrow \infty} \mathbb{P}\left(A_{n} \mid B_{n}\right)=\mathbb{P}(A \mid B)$.

Exercise 5. Let A, B, C be three mutually independent events and $\mathbb{P}(B \cap C) \neq 0$. Prove that $\mathbb{P}(A \mid B \cap C)=\mathbb{P}(A)$.

Exercise 6. A pair of dice is rolled until a sum of either 5 or 7 appears. Find the probability that a 5 occurs first. Hint: consider the event E_{n} that a 5 occurs on the nth roll and no 5 or 7 occurs on the first $(n-1)$ rolls.

Exercise 7. Let $\left(s_{n}\right)_{n \geq 0}$ be a 1-dimensional, unbiased random walk. For $a, b \in \mathbb{Z}$, let $T_{a}=\inf \left\{n \geq 0: s_{n}=a\right\}$ and $T_{a, b}=\inf \left\{n \geq 0: s_{n}=a\right.$ or $\left.s_{n}=b\right\}$. For $x \in \mathbb{Z}$, let $\omega(x)=\mathbb{P}\left(s_{T_{a, b}}=b \mid s_{0}=x\right)$.

Prove that for $a<x<b, \omega(x)=\frac{1}{2}(\omega(x+1)+\omega(x-1))$, provided we define $\omega(a)=0$ and $\omega(b)=1$. Conclude that

$$
\omega(x)=\frac{x-a}{b-a} .
$$

Prove that $\mathbb{P}\left(T_{b}<\infty\right)=1$.

