Probability, homework 4, due February 26.

Exercise 1. Let $(A_n)_{n\geq 0}$ be a set of pairwise disjoint events and \mathbb{P} a probability. Show that $\lim_{n\to\infty} \mathbb{P}(A_n) = 0$.

Exercise 2. Suppose a distribution function F is given by

$$F(x) = \frac{1}{4}\mathbb{1}_{[0,\infty)}(x) + \frac{1}{2}\mathbb{1}_{[1,\infty)}(x) + \frac{1}{4}\mathbb{1}_{[2,\infty)}(x)$$

What is the probability of the following events, (-1/2, 1/2), (-1/2, 3/2), (2/3, 5/2), $(3, \infty)$?

Exercise 3. Let X be random variable on a countable probability space. Suppose that $\mathbb{E}(|X|) = 0$. Prove that $\mathbb{P}(X = 0) = 1$. Is it true, in general, that for any $\omega \in \Omega$ we have $X(\omega) = 0$?

Exercise 4. Let \mathbb{P} be a probability measure on Ω , endowed with a σ -algebra \mathscr{A} .

(i) What is the meaning of the following events, where all A_n 's are elements of \mathscr{A} ?

$$\liminf_{n \to \infty} A_n = \bigcup_{n \ge 1} \bigcap_{k \ge n} A_k, \quad \limsup_{n \to \infty} A_n = \bigcap_{n \ge 1} \bigcup_{k \ge n} A_k.$$

(ii) In the special case $\Omega = \mathbb{R}$ and \mathcal{A} is its Borel σ -algebra, for any $p \geq 1$, let

$$A_{2p} = \left[-1, 2 + \frac{1}{2p}\right), \quad A_{2p+1} = \left(-2 - \frac{1}{2p+1}, 1\right].$$

What are $\liminf_{n\to\infty} A_n$ and $\limsup_{n\to\infty} A_n$?

(iii) Prove that the following always holds:

$$\mathbb{P}\left(\liminf_{n\to\infty}A_n\right) \le \liminf_{n\to\infty}\mathbb{P}\left(A_n\right), \mathbb{P}\left(\limsup_{n\to\infty}A_n\right) \ge \limsup_{n\to\infty}\mathbb{P}\left(A_n\right).$$

Exercise 5. Let c > 0 and X be a real random variable such that for any $\lambda \in \mathbb{R}$

$$\mathbb{E}\left(e^{\lambda X}\right) \le e^{c\frac{\lambda^2}{4}}$$

Prove that, for any $\delta > 0$,

$$\mathbb{P}\left(|X| > \delta\right) \le 2e^{-\frac{\delta^2}{c}}.$$

Exercise 6. You toss a coin repeatedly and independently. The probability to get a head is p, a tail is 1-p. Let A_k be the following event: k or more consecutive heads occur amongst the tosses numbered $2^k, \ldots, 2^{k+1} - 1$. Prove that $\mathbb{P}(A_k \text{ i.o.}) = 1$ if $p \geq 1/2, 0$ otherwise.

Here, i.o. stands for "infinitely often", and A_k i.o. is the event $\bigcap_{n\geq 1} \bigcup_{m\geq n} A_m$.

Exercise 7. Let $\epsilon > 0$ and X be uniformly distributed on [0, 1]. Prove that, almost surely (i.e. the following event has probability 1), there exists only a finite number of rationals $\frac{p}{q}$, with $p \wedge q = 1$, such that

$$\left| X - \frac{p}{q} \right| < \frac{1}{q^{2+\epsilon}}.$$