Probability, homework 4, due February 26.

Exercise 1. Let $\left(A_{n}\right)_{n \geq 0}$ be a set of pairwise disjoint events and \mathbb{P} a probability. Show that $\lim _{n \rightarrow \infty} \mathbb{P}\left(A_{n}\right)=0$.

Exercise 2. Suppose a distribution function F is given by

$$
F(x)=\frac{1}{4} \mathbb{1}_{[0, \infty)}(x)+\frac{1}{2} \mathbb{1}_{[1, \infty)}(x)+\frac{1}{4} \mathbb{1}_{[2, \infty)}(x)
$$

What is the probability of the following events, $(-1 / 2,1 / 2),(-1 / 2,3 / 2),(2 / 3,5 / 2)$, $(3, \infty)$?

Exercise 3. Let X be random variable on a countable probability space. Suppose that $\mathbb{E}(|X|)=0$. Prove that $\mathbb{P}(X=0)=1$. Is it true, in general, that for any $\omega \in \Omega$ we have $X(\omega)=0$?

Exercise 4. Let \mathbb{P} be a probability measure on Ω, endowed with a σ-algebra \mathscr{A}.
(i) What is the meaning of the following events, where all A_{n} 's are elements of \mathscr{A} ?

$$
\liminf _{n \rightarrow \infty} A_{n}=\bigcup_{n \geq 1} \bigcap_{k \geq n} A_{k}, \quad \limsup _{n \rightarrow \infty} A_{n}=\bigcap_{n \geq 1} \bigcup_{k \geq n} A_{k}
$$

(ii) In the special case $\Omega=\mathbb{R}$ and \mathcal{A} is its Borel σ-algebra, for any $p \geq 1$, let

$$
A_{2 p}=\left[-1,2+\frac{1}{2 p}\right), \quad A_{2 p+1}=\left(-2-\frac{1}{2 p+1}, 1\right] .
$$

What are $\liminf _{n \rightarrow \infty} A_{n}$ and $\lim \sup _{n \rightarrow \infty} A_{n}$?
(iii) Prove that the following always holds:

$$
\mathbb{P}\left(\liminf _{n \rightarrow \infty} A_{n}\right) \leq \liminf _{n \rightarrow \infty} \mathbb{P}\left(A_{n}\right), \mathbb{P}\left(\limsup _{n \rightarrow \infty} A_{n}\right) \geq \limsup _{n \rightarrow \infty} \mathbb{P}\left(A_{n}\right)
$$

Exercise 5. Let $c>0$ and X be a real random variable such that for any $\lambda \in \mathbb{R}$

$$
\mathbb{E}\left(e^{\lambda X}\right) \leq e^{c \frac{\lambda^{2}}{4}}
$$

Prove that, for any $\delta>0$,

$$
\mathbb{P}(|X|>\delta) \leq 2 e^{-\frac{\delta^{2}}{c}}
$$

Exercise 6. You toss a coin repeatedly and independently. The probability to get a head is p, a tail is $1-p$. Let A_{k} be the following event: k or more consecutive heads occur amongst the tosses numbered $2^{k}, \ldots, 2^{k+1}-1$. Prove that $\mathbb{P}\left(A_{k}\right.$ i.o. $)=1$ if $p \geq 1 / 2,0$ otherwise.

Here, i.o. stands for "infinitely often", and A_{k} i.o. is the event $\cap_{n \geq 1} \cup_{m \geq n} A_{m}$.
Exercise 7. Let $\epsilon>0$ and X be uniformly distributed on $[0,1]$. Prove that, almost surely (i.e. the following event has probability 1), there exists only a finite number of rationals $\frac{p}{q}$, with $p \wedge q=1$, such that

$$
\left|X-\frac{p}{q}\right|_{1}<\frac{1}{q^{2+\epsilon}}
$$

