Probability, homework 6.

Exercise 1. In the (O, x, y) plane, a random ray emerges from a light source at point $(-1,0)$, towards the (O, y) axis. The angle with the (O, x) axis is uniform on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. What is the distribution of the impact point with the (O, y) axis?

Exercise 2. Let X be uniform on $(-\pi, \pi)$ and $Y=\sin (X)$. Show that the density of Y is

$$
\frac{1}{\pi \sqrt{1-y^{2}}} \mathbb{1}_{[-1,1]}(y)
$$

Exercise 3. Let (X, Y) be uniform on the unit ball, i.e. it has density

$$
f_{(X, Y)}(x, y)=\left\{\begin{array}{lll}
\frac{1}{\pi} & \text { if } & x^{2}+y^{2} \leq 1 \\
0 & \text { if } & x^{2}+y^{2}>1
\end{array}\right.
$$

Find the density of $\sqrt{X^{2}+Y^{2}}$.
Exercise 4. Let (X, Y) have density $\frac{1}{2 \pi} e^{-\frac{x^{2}+y^{2}}{2}}$. What is the density of X / Y ?
Exercise 5. Let $\left(X_{i}\right)_{i \geq 1}$ be i.i.d. Gaussian with mean 1 and variance 3. Show that

$$
\lim _{n \rightarrow \infty} \frac{X_{1}+\cdots+X_{n}}{X_{1}^{2}+\cdots+X_{n}^{2}}=\frac{1}{4} \text { a.s. }
$$

Exercise 6. Let f be a continuous function on $[0,1]$. Calculate the asymptotics, as $n \rightarrow \infty$, of

$$
\int_{[0,1]^{n}} f\left(\frac{x_{1}+\cdots+x_{n}}{n}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n}
$$

Exercise 7. The goal of this exercise is to prove that any function, continuous on an interval of \mathbb{R}, can be approximated by polynomials, arbitrarily close for the L^{∞} norm (this is the Bernstein-Weierstrass theorem). Let f be a continuous function on $[0,1]$. The n-th Bernstein polynomial is

$$
B_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k} f\left(\frac{k}{n}\right)
$$

a) Let $S_{n}(x)=B^{(n, x)} / n$, where $B^{(n, x)}$ is a binomial random variable with parameters n and $x: \quad B^{(n, x)}=\sum_{\ell=1}^{n} X_{i}$ where the X_{i} 's are independent and $\mathbb{P}\left(X_{i}=1\right)=x, \mathbb{P}\left(X_{i}=0\right)=1-x$. Prove that $B_{n}(x)=\mathbb{E}\left(f\left(S_{n}(x)\right)\right)$.
b) Prove that $\left\|B_{n}-f\right\|_{L^{\infty}([0,1])} \rightarrow 0$ as $n \rightarrow \infty$.

