Probability, homework 7, due March 25.

Exercise 1. Let X have a binomial distribution with parameters (p, n). Prove that X is even with probability

$$
\frac{1}{2}\left(1+(1-2 p)^{n}\right)
$$

Exercise 2

(i) Let X, Y be two independent and identically distributed real random variables. What is $\mathbb{P}(X=Y)$?
(ii) Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of real, independent and identically distributed random variables, with distribution function F. Show that almost surely we have

$$
\max \left(X_{1}, \ldots, X_{n}\right) \rightarrow \sup \{x \in \mathbb{R} \mid F(x)<1\}
$$

Exercise 3. Let X have distribution function $F(x)=e^{-e^{-x}}$. Justify that such a probability measure on \mathbb{R} exists. Let $Y=F(X)$. Calculate $\mathbb{E}(Y)$ and $\operatorname{Var}(Y)$.

Exercise 4. Let X be a real Gaussian random variable with mean 0 and variance 7. Calculate
(i) $\mathbb{E}\left(e^{\lambda X}\right)$ for any $\lambda \in \mathbb{C}$;
(ii) $\mathbb{E}\left(X^{7}-3 X^{2}+12 X-4\right)$.

Exercise 5 Let X be a standard Gaussian random variable. Prove that for any $n \in \mathbb{N}^{*}, \mathbb{E}\left(X^{2 n+1}\right)=0$ and $\mathbb{E}\left(X^{2 n}\right)=\frac{(2 n)!}{2^{n} n!}$. You could for example use an expansion of the characteristic function of X.

Exercise 6. Let X be a random variable with density $f_{X}(x)=(1-|x|) \mathbb{1}_{(-1,1)}(x)$. Show that its characteristic function is

$$
\phi_{X}(u)=\frac{2(1-\cos u)}{u^{2}} .
$$

Exercise 7 Let X be a Poisson random variable with parameter λ. What is its characteristic function?

Exercise 8 Read about the Cauchy residue formula in complex analysis. Applying it to a contour with semicircular shape, prove that for $\mu(\mathrm{d} x)=\frac{1}{\pi\left(1+x^{2}\right)} \mathrm{d} x$ we have $\hat{\mu}(u)=e^{-|u|}$.

Exercise 9

(1) Prove that $\hat{\mu}$ is real-valued if and only if μ is symmetric, i.e. $\mu(A)=\mu(-A)$ for any Borel set A
(2) If X and Y are i.i.d., prove that $X-Y$ has a symmetric distribution.

Exercise 10 Let X, Y be i.i.d., with characteristic functions denoted φ_{X}, φ_{Y}, and suppose $\mathbb{E}(X)=0, \mathbb{E}\left(X^{2}\right)=1$. Assume also that $X+Y$ and $X-Y$ are independent.
(1) Prove that

$$
\varphi_{X}(2 u)=\left(\varphi_{X}(u)\right)^{3} \varphi_{X}(-u)
$$

(2) Prove that X is a standard Gaussian random variable.

Exercise 11 Assume that (X, Y) has joint density

$$
c e^{-\left(1+x^{2}\right)\left(1+y^{2}\right)}
$$

where c is properly chosen. Prove that X and Y are Gaussian random variables, but that (X, Y) is not a Gaussian vector.

