Probability, homework 1, due September 14.

Exercise 1. Prove whether the following sets are countable or not.
(i) All intervals in \mathbb{R} with rational endpoints.
(ii) All circles in the plane with rational radii and centers on the diagonal $x=y$.
(iii) All sequences of integers whose terms are either 0 or 1.

Exercise 2. Let $\left(\mathcal{G}_{\alpha}\right)_{\alpha \in A}$ be an arbitrary family of σ-fields defined on an abstract space Ω, with A possibly uncountable. Show that $\cap_{\alpha \in A} \mathcal{G}_{\alpha}$ is also a σ-field.

Exercise 3. Let $\varnothing \subsetneq A \subsetneq B \subsetneq \Omega$ (these are strict inclusions). What is the σ-field generated by $\{A, B\}$?

Exercise 4. Let \mathcal{F}, \mathcal{G} be σ-fields for the same Ω. Is $\mathcal{F} \cup \mathcal{G}$ a σ-field?

Exercise 5. For $\Omega=\mathbb{N}$ and $n \geq 0$, let $\mathcal{F}_{n}=\sigma(\{\{0\}, \ldots,\{n\}\})$. Show that $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ is a non-decreasing sequence but that $\cup_{n \geq 0} \mathcal{F}_{n}$ is a not a σ-field.

Exercise 6. Let Ω be an infinite set (countable or not). Let \mathcal{A} be the set of subsets of Ω that are either finite or with finite complement in Ω. Prove that \mathcal{A} is a field but not a σ-field.

Exercise 7. A monotone class is a collection \mathcal{M} of sets closed under both monotone increasing and monotone decreasing (i.e. if $A_{i} \in \mathcal{M}$ and either $A_{i} \uparrow A$ or $A_{i} \downarrow A$ then $A \in \mathcal{M}$)

Prove that if $\mathcal{A} \subset \mathcal{M}$ with \mathcal{A} a field and \mathcal{M} a monotone class, then $\sigma(\mathcal{A}) \subset \mathcal{M}$.
Exercise 8. Let \mathbb{P} be a probability measure on Ω, endowed with a σ-field \mathcal{A}.
(i) What is the meaning of the following events, where all A_{n} 's are elements of \mathcal{A} ?

$$
\liminf _{n \rightarrow \infty} A_{n}=\bigcup_{n \geq 1} \bigcap_{k \geq n} A_{k}, \quad \limsup _{n \rightarrow \infty} A_{n}=\bigcap_{n \geq 1} \bigcup_{k \geq n} A_{k}
$$

(ii) Prove that $\lim \sup _{n \rightarrow \infty} A_{n}$ and $\liminf _{n \rightarrow \infty} A_{n}$ are in \mathcal{A}.
(iii) In the special case $\Omega=\mathbb{R}$, for any $p \geq 1$, let

$$
A_{2 p}=\left[-1,2+\frac{1}{2 p}\right), \quad A_{2 p+1}=\left(-2-\frac{1}{2 p+1}, 1\right] .
$$

What are $\liminf _{n \rightarrow \infty} A_{n}$ and $\lim \sup _{n \rightarrow \infty} A_{n}$?
(iv) Prove that the following always holds:

$$
\mathbb{P}\left(\liminf _{n \rightarrow \infty} A_{n}\right) \leq \liminf _{n \rightarrow \infty} \mathbb{P}\left(A_{n}\right), \mathbb{P}\left(\limsup _{n \rightarrow \infty} A_{n}\right) \geq \limsup _{n \rightarrow \infty} \mathbb{P}\left(A_{n}\right)
$$

Exercise 9. The symmetric difference of two events A and B, denoted $A \triangle B$, is the event that precisely one of them occurs: $A \triangle B=(A \cup B) \backslash(A \cap B)$.
(i) Write a formula for $A \triangle B$ that only involves the operations of union, intersection and complement, but no set difference.
(ii) Define $d(A, B)=\mathbb{P}(A \triangle B)$. Show that for any three events A, B, C,

$$
d(A, B)+d(B, C)-d(A, C)=2\left(\mathbb{P}\left(A \cap B^{c} \cap C\right)+\mathbb{P}\left(A^{c} \cap B \cap C^{c}\right)\right)
$$

(iii) Assume $A \subset B \subset C$. Prove that $d(A, C)=d(A, B)+d(B, C)$.

Exercise 10. Prove the Bonferroni inequalities: if $A_{i} \in \mathcal{A}$ is a sequence of events, then
(i) $\mathbb{P}\left(\cup_{i=1}^{n} A_{i}\right) \geq \sum_{i=1}^{n} \mathbb{P}\left(A_{i}\right)-\sum_{i<j} \mathbb{P}\left(A_{i} \cap A_{j}\right)$,
(ii) $\mathbb{P}\left(\cup_{i=1}^{n} A_{i}\right) \leq \sum_{i=1}^{n} \mathbb{P}\left(A_{i}\right)-\sum_{i<j} \mathbb{P}\left(A_{i} \cap A_{j}\right)+\sum_{i<j<k} \mathbb{P}\left(A_{i} \cap A_{j} \cap A_{k}\right)$.

