Probability, homework 2, due September 21.

Exercise 1. Let \mathcal{A} be a σ-algebra, \mathbb{P} a probability measure and $\left(A_{n}\right)_{n \geq 1}$ a sequence of events in \mathcal{A} which converges to A. Prove that
(i) $A \in \mathcal{A}$;
(ii) $\lim _{n \rightarrow \infty} \mathbb{P}\left(A_{n}\right)=\mathbb{P}(A)$.

Exercise 2. Suppose a distribution function F is given by

$$
F(x)=\frac{1}{4} \mathbb{1}_{[0, \infty)}(x)+\frac{1}{2} \mathbb{1}_{[1, \infty)}(x)+\frac{1}{4} \mathbb{1}_{[2, \infty)}(x)
$$

What is the probability of the following events, $(-1 / 2,1 / 2),(-1 / 2,3 / 2),(2 / 3,5 / 2)$, $(3, \infty)$?

Exercise 3. Let μ be the Lebesgue measure on \mathbb{R}. Build a sequence of functions $\left(f_{n}\right)_{n \geq 0}, 0 \leq f_{n} \leq 1$, such that $\int f_{n} \mathrm{~d} \mu \rightarrow 0$ but for any $x \in \mathbb{R},\left(f_{n}(x)\right)_{n \geq 0}$ does not converge.

Exercise 4. Let X be a random variable in $\mathrm{L}^{1}(\Omega, \mathcal{A}, \mathbb{P})$. Let $\left(A_{n}\right)_{n \geq 0}$ be a sequence of events in \mathcal{A} such that $\mathbb{P}\left(A_{N}\right) \underset{n \rightarrow \infty}{\longrightarrow} 0$. Prove that $\mathbb{E}\left(X \mathbb{1}_{A_{n}}\right) \underset{n \rightarrow \infty}{\longrightarrow} 0$.

Exercise 5. Let $\left(d_{n}\right)_{n \geq 0}$ be a sequence in $(0,1)$, and $K_{0}=[0,1]$. We define iteratively $\left(K_{n}\right)_{n \geq 0}$ in the following way. From K_{n}, which is the union of closed disjoint intervals, we define K_{n+1} by removing from each interval of K_{n} an open interval, centered at the middle of the previous one, with length d_{n} times the length of the previous one. Let $K=\cap_{n \geq 0} K_{n}$ (K is called a Cantor set).
(a) Prove that K is an uncountable compact set, with empty interior, and whose points are all accumulation points
(b) What is the Lebesgue measure of K ?

Exercise 6. Let X be a nonnegative random variable. Prove that $\mathbb{E}(X)<+\infty$ if and only if $\sum_{n \in \mathbb{N}} \mathbb{P}(X \geq n)<\infty$.

Exercise 7. Convergence in measure. Let $(\Omega, \mathcal{A}, \mu)$ be a probability space. and $\left(f_{n}\right)_{n \geq 1}, f: \Omega \rightarrow \mathbb{R}$ measurable (for the Borel σ-field on \mathbb{R}). We say that $\left(f_{n}\right)_{n \geq 1}$ converges in measure to f if for any $\varepsilon>0$ we have

$$
\mu\left(\left|f_{n}-f\right|>\varepsilon\right) \underset{n \rightarrow \infty}{\longrightarrow} 0
$$

(i) Show that $\int\left|f-f_{n}\right| \mathrm{d} \mu \rightarrow 0$ implies that f_{n} converges to f in measure. Is the reciprocal true?
(ii) Show that if $f_{n} \rightarrow f \mu$-almost surely, then $f_{n} \rightarrow f$ in measure. Is the reciprocal true?
(iii) Show that if $f_{n} \rightarrow f$ in measure, there exists a subsequence of $\left(f_{n}\right)_{n \geq 1}$ which converges μ-almost surely.
(iv) (A stronger dominated convergence theorem) We assume that $f_{n} \rightarrow f$ in measure and $\left|f_{n}\right| \leq g$ for some integrable $g: \Omega \rightarrow \mathbb{R}$, for any $n \geq 1$.
(a) Show that $|f| \leq g \mu$-a.s.
(b) Deduce that $\int\left|f_{n}-f\right| \mathrm{d} \mu \rightarrow 0$.

Exercise 8. Consider a probability space $(\Omega, \mathcal{A}, \mu)$ and $\left(A_{n}\right)_{n}$ a sequence in \mathcal{A}. Let $f: \Omega \rightarrow \mathbb{R}$ be measurable (for the Borel σ-field on \mathbb{R}) such that $\int_{\Omega}\left|\mathbb{1}_{A_{n}}-f\right| \mathrm{d} \mu \rightarrow 0$ as $n \rightarrow \infty$. Prove that there exists $A \in \mathcal{A}$ such that $f=\mathbb{1}_{A} \mu$-a.s., i.e. $\mu(f=$ $\left.\mathbb{1}_{A}\right)=1$.

