Probability, homework 3 due September 28.

Exercise 1. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. Prove that if $A \cap B=\emptyset$ and A, B are independent, then $\mathbb{P}(A)=0$ or $\mathbb{P}(B)=0$.

Exercise 2. Let X be a nonnegative random variable with null expectation. Prove that it is 0 almost surely.

Exercise 3. Calculate $\mathbb{E}(X)$ for the following probability measures \mathbb{P}^{X}.
(i) \mathbb{P}^{X} has Gaussian density $\frac{1}{\sqrt{2 \pi} \sigma} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)}$, for some $\sigma>0$ and $\mu \in \mathbb{R}$;
(ii) \mathbb{P}^{X} has exponential dentity $\lambda e^{-\lambda x} \mathbb{1}_{x \geq 0}$ for some $\lambda>0$;
(iii) $\mathbb{P}^{X}=p \delta_{a}+q \delta_{b}$ where $p+q=1, p, q \geq 0$ and $a, b \in \mathbb{R}$;
(iv) \mathbb{P}^{X} is the Poisson distribution: $\mathbb{P}^{X}(\{n\})=e^{-\lambda} \frac{\lambda^{n}}{n!}$ for any integer $n \geq 0$, for some $\lambda>0$.

Exercise 4. Let X be a standard Gaussian random variable. What is the density of $1 / X^{2}$?

Exercise 5. Let X be uniformly distributed on $[0,1]$ and $\lambda>0$. Show that $-\lambda^{-1} \log X$ has the same distribution as an exponential random variable with parameter λ.

Exercise 6. A samouraï wants to create a triangle with a (rigid) spaghetti. With his saber, he cuts this spaghetti on two places, chosen uniformly and independently along this traditional pasta. What is the probability that he can create a triangle with sides these three pieces of spaghetti?

Exercise 7. Assume that X_{1}, X_{2}, \ldots are independent random variables uniformly distributed on $[0,1]$. Let $Y^{(n)}=n \inf \left\{X_{i}, 1 \leq i \leq n\right\}$. Prove that it converges weakly to an exponential random variable, i.e. for any continuous bounded function $f: \mathbb{R}^{+} \rightarrow \mathbb{R}$,

$$
\mathbb{E}\left(f\left(Y^{(n)}\right)\right) \underset{n \rightarrow \infty}{\longrightarrow} \int_{\mathbb{R}^{+}} f(u) e^{-u} \mathrm{~d} u .
$$

Exercise 8. Let n and m be random numbers chosen independently and uniformly on $\llbracket 1, N \rrbracket$. What are Ω, \mathcal{A} and \mathbb{P} (which all implicitly depend on N) ? Prove that $\mathbb{P}(n \wedge m=1) \underset{N \rightarrow \infty}{\longrightarrow} \zeta(2)^{-1}$ where $\zeta(2)=\prod_{p \in \mathcal{P}}\left(1-p^{-2}\right)^{-1}=\sum_{n \geq 1} n^{-2}=\frac{\pi^{2}}{6}$ (you don't have to prove these equalities). Here \mathcal{P} is the set of prime numbers and $n \wedge m=1$ means that their greatest common divisor is 1 .

Exercise 9. Let $\epsilon>0$ and X be uniformly distributed on $[0,1]$. Prove that, almost surely (i.e. the following event has probability 1), there exists only a finite number of rationals $\frac{p}{q}$, with $p \wedge q=1$, such that

$$
\left|X-\frac{p}{q}\right|<\frac{1}{q^{2+\epsilon}} .
$$

Exercise 10. You toss a coin repeatedly and independently. The probability to get a head is p, a tail is $1-p$. Let A_{k} be the following event: k or more consecutive heads occur amongst the tosses numbered $2^{k}, \ldots, 2^{k+1}-1$. Prove that $\mathbb{P}\left(A_{k}\right.$ i.o. $)=1$ if $p \geq 1 / 2,0$ otherwise.

Here, i.o. stands for "infinitely often", and A_{k} i.o. is the event $\cap_{n \geq 1} \cup_{m \geq n} A_{m}$.

