Probability, homework 4 due October 5.

Exercise 1. Let X be a random variable with density $f_{X}(x)=(1-|x|) \mathbb{1}_{(-1,1)}(x)$. Show that its characteristic function is

$$
\phi_{X}(u)=\frac{2(1-\cos u)}{u^{2}}
$$

Exercise 2.

(1) Prove that $\hat{\mu}$ is real-valued if and only if μ is symmetric, i.e. $\mu(A)=\mu(-A)$ for any Borel set A
(2) If X and Y are i.i.d., prove that $X-Y$ has a symmetric distribution.

Exercise 3. Let X_{λ} be a real random variable, with Poisson distribution with parameter λ. Calculate the characteristic function of X_{λ}. Conclude that $\left(X_{\lambda}-\lambda\right) / \sqrt{\lambda}$ converges in distribution to a standard Gaussian, as $\lambda \rightarrow \infty$.

Exercise 4. Assume that the sequence of random variables $\left(X_{n}\right)_{n \geq 1}$ satisfies $\mathbb{E} X_{n} \rightarrow 1$ and $\mathbb{E} X_{n}^{2} \rightarrow 1$. Prove that $\left(X_{n}\right)_{n \geq 1}$ converges in distribution. What is the limit?

Exercise 5. Let $\left(X_{n}\right)_{n \geq 1},\left(Y_{n}\right)_{n \geq 1}$ be real random variables, with X_{n} and Y_{n} independent for any $n \geq 1$, and assume that X_{n} converges in distribution to X and Y_{n} to Y. Prove that $X_{n}+Y_{n}$ converges in distribution to $X+Y$.

Exercise 6. Let X, Y be independent and assume that for some constant α we have $\mathbb{P}(X+Y=\alpha)=1$. Prove that X and Y are both constant random variables.

Exercise 7. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of i.i.d. random variables with standard Cauchy distribution and let $M_{n}=\max \left(X_{1}, \ldots, X_{n}\right)$. Prove that $\left(n M_{n}^{-1}\right)_{n \geq 1}$ converges in distribution and identify the limit.

Exercise 8 Let X, Y be i.i.d., with characteristic functions denoted φ_{X}, φ_{Y}, and suppose $\mathbb{E}(X)=0, \mathbb{E}\left(X^{2}\right)=1$. Assume also that $X+Y$ and $X-Y$ are independent.
(1) Prove that

$$
\varphi_{X}(2 u)=\left(\varphi_{X}(u)\right)^{3} \varphi_{X}(-u)
$$

(2) Prove that X is a standard Gaussian random variable.

Exercise 9. For any $d \geq 1$, we admit that there is only one probability measure μ on \mathcal{S}_{d}, (the $(d-1)$-th dimensional sphere embedded in \mathbb{R}^{d}) that is uniform, in the following sense: for any isometry $A \in \mathrm{O}(d)$ (the orthogonal group in \mathbb{R}^{d}), and any continuous function $f: \mathcal{S}_{d} \rightarrow \mathbb{R}$,

$$
\int_{\mathcal{S}_{d}} f(x) \mathrm{d} \mu(x)=\int_{\mathcal{S}_{d}} f(A x) \mathrm{d} \mu(x) .
$$

Let $X=\left(X_{1}, \ldots, X_{d}\right)$ be a vector of independent centered and reduced Gaussian random variables.
a) Prove that the random variable $U=X /\|X\|_{L^{2}}$ is uniformly distributed on the sphere.
b) Prove that, as $d \rightarrow \infty$, the main part of the globe is concentrated close to the Equator, i.e. for any $\varepsilon>0$,

$$
\int_{x \in \mathcal{S}_{d},\left|x_{1}\right|<\epsilon} \mathrm{d} \mu(x) \rightarrow 1
$$

