Probability, homework 5, due October 19.

Exercise 1. Prove that if a sequence of real random variables (X_n) converge in distribution to X, and (Y_n) converges in distribution to a constant c, then $X_n + Y_n$ converges in distribution to X + c.

Exercise 2. Assume that (X, Y) has joint density

$$ce^{-(1+x^2)(1+y^2)}$$
.

where c is properly chosen. Are X and Y Gaussian random variables? Is (X, Y) a Gaussian vector?

Exercise 3. Let $(X_i)_{i\geq 1}$ be a sequence of i.i.d. random variables with mean 0 and finite variance $\mathbb{E}(X_i^2) = \sigma^2 > 0$. Let $S_n = X_1 + \cdots + X_n$. Prove that

$$\lim_{n \to \infty} \mathbb{E}\left(\frac{|S_n|}{\sqrt{n}}\right) = \sqrt{\frac{2}{\pi}}\sigma$$

Exercise 4. Let the X_{ℓ} 's be independent uniformly bounded real random variables. Let $\mu_{\ell} = \mathbb{E}(X_{\ell})$, and $\sigma_{\ell}^2 = \operatorname{Var}(X_{\ell})$ satisfy $c_1 < \sigma_{\ell}^2$ for some c_1 which does not depend on ℓ . State and prove a central limit theorem for $\sum_{\ell=1}^{n} X_{\ell}$.

Exercise 5. Let $(X_i)_{i\geq 1}$ be a sequence of independent random variables, with X_i uniform on [-i, i]. Let $S_n = X_1 + \cdots + X_n$. Prove that $S_n/n^{3/2}$ converges in distribution and describe the limit.

Long problem. The goal of this problem is to prove the iterated logarithm law, first for Gaussian random variables. In other words, for $X_1, X_2 \dots$ i.i.d. standard Gaussian random variables, denoting $S_n = X_1 + \cdots + X_n$, we have

$$\mathbb{P}\left(\limsup_{n \to \infty} \frac{S_n}{\sqrt{2n \log \log n}} = 1\right) = 1 \tag{0.1}$$

(1) Prove that

$$\mathbb{P}(X_1 > \lambda) \underset{\lambda \to \infty}{\sim} \frac{1}{\lambda \sqrt{2\pi}} e^{-\frac{\lambda^2}{2}}$$

In the following questions we denote $f(n) = \sqrt{2n \log \log n}, \lambda > 1, c, \alpha > 0$, (2) Prove that for any c > 1 we have $\sum_{k \ge 1} \mathbb{P}(A_k) < \infty$ and

$$\limsup_{k \to \infty} \frac{S_{\lfloor \lambda^k \rfloor}}{f(\lambda^k)} \le 1 \text{ a.s.}$$

(3) Prove that for any c < 1 we have $\sum_{k>1} \mathbb{P}(C_k) = \infty$ and

$$\mathbb{P}(C_k \text{ i.o.}) = 1.$$

(4) Let $\varepsilon > 0$ and choose $c = 1 - \varepsilon/10$. Prove that almost surely the following inequality holds for infinitely many k:

$$\frac{S_{\lfloor \lambda^{k+1} \rfloor}}{f(\lambda^{k+1})} \ge c \frac{f(\lambda^{k+1} - \lambda^k)}{f(\lambda^{k+1})} - (1+\varepsilon) \frac{f(\lambda^k)}{f(\lambda^{k+1})}$$

(5) By choosing a large enough λ in the previous inequality, prove that almost surely

$$\limsup_{n \to \infty} \frac{S_n}{f(n)} \ge 1.$$

(6) Prove that for any $n \in [\lambda^k, \lambda^{k+1}]$ we have

$$\frac{S_n}{f(n)} \leq \frac{S_{\lfloor \lambda^k \rfloor}}{f(\lfloor \lambda^k \rfloor)} + \frac{S_n - S_{\lfloor \lambda^k \rfloor}}{f(\lfloor \lambda^k \rfloor)}$$

(7) Prove that

$$\mathbb{P}(D_k) \underset{k \to \infty}{\sim} 2\mathbb{P}\left(X_1 \ge \frac{\alpha f(\lambda^k)}{\sqrt{\lambda^{k+1} - \lambda^k}}\right) \underset{k \to \infty}{\sim} \frac{c}{\sqrt{\log \lambda}} \left(\frac{1}{k}\right)^{\frac{\alpha^2}{\lambda - 1}}$$

(8) Prove that for $\alpha^2 > \lambda - 1$, almost surely

$$\limsup_{n \to \infty} \frac{S_n}{f(n)} \le \limsup_{n \to \infty} \frac{S_{\lfloor \lambda^k \rfloor}}{f(\lambda^k)} + \alpha$$

(9) By choosing appropriate λ and α , prove that almost surely

$$\limsup_{n \to \infty} \frac{S_n}{f(n)} \le 1.$$

(10) State a result similar to (0.1) for i.i.d. uniformly bounded random variables. Which steps in the above proof need to be modified to prove this universality result? How?

 $\mathbf{2}$