## Probability, homework 6, due October 26.

**Exercise 1**. Let X have distribution function  $F(x) = e^{-e^{-x}}$ . Justify that such a probability measure on  $\mathbb{R}$  exists. Let Y = F(X). Calculate  $\mathbb{E}(Y)$  and  $\operatorname{Var}(Y)$ .

**Exercise 2.** Assume  $(\Omega, \mathcal{A}, \mathbb{P})$  is such that  $\Omega$  is countable and  $\mathcal{A} = 2^{\Omega}$ . Prove that convergence in probability and convergence almost sure are the same.

**Exercise 3.** Let  $(X_i)_{i \ge 1}$  be i.i.d. Gaussian with mean 1 and variance 3. Show that

$$\lim_{n \to \infty} \frac{X_1 + \dots + X_n}{X_1^2 + \dots + X_n^2} = \frac{1}{4} \text{ a.s}$$

**Exercise 4.** Let f be a continuous function on [0, 1]. Calculate the asymptotics, as  $n \to \infty$ , of

$$\int_{[0,1]^n} f\left(\frac{x_1+\cdots+x_n}{n}\right) \mathrm{d}x_1 \ldots \mathrm{d}x_n.$$

**Exercise 5.** The goal of this exercise is to prove that any function, continuous on an interval of  $\mathbb{R}$ , can be approximated by polynomials, arbitrarily close for the  $L^{\infty}$  norm (this is the Bernstein-Weierstrass theorem). Let f be a continuous function on [0, 1]. The *n*-th Bernstein polynomial is

$$B_n(x) = \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} f\left(\frac{k}{n}\right).$$

a) Let  $S_n(x) = B^{(n,x)}/n$ , where  $B^{(n,x)}$  is a binomial random variable with parameters n and x:  $B^{(n,x)} = \sum_{\ell=1}^{n} X_i$  where the  $X_i$ 's are independent and  $\mathbb{P}(X_i = 1) = x$ ,  $\mathbb{P}(X_i = 0) = 1 - x$ . Prove that  $B_n(x) = \mathbb{E}(f(S_n(x)))$ . b) Prove that  $\|B_n - f\|_{L^{\infty}([0,1])} \to 0$  as  $n \to \infty$ .

Exercise 6. Calculate

$$\lim_{n \to \infty} e^{-n} \sum_{k=0}^{n} \frac{n^k}{k!}$$

**Exercise 7.** Let  $\alpha > 0$  and, given  $(\Omega, \mathcal{A}, \mathbb{P})$ , let  $(X_n, n \ge 1)$  be a sequence of independent real random variables with law  $\mathbb{P}(X_n = 1) = \frac{1}{n^{\alpha}}$  and  $\mathbb{P}(X_n = 0) = 1 - \frac{1}{n^{\alpha}}$ . Prove that  $X_n \to 0$  in  $\mathcal{L}^1$ , but that almost surely

$$\limsup_{n \to \infty} X_n = \begin{cases} 1 & \text{if } \alpha \le 1 \\ 0 & \text{if } \alpha > 1 \end{cases}$$

**Exercise 8.** A sequence of random variables  $(X_i)_{i\geq 1}$  is said to be completely convergent to X if for any  $\varepsilon > 0$ , we have  $\sum_{i\geq 1} \mathbb{P}(|X_i - X| > \varepsilon) < \infty$ . Prove that if the  $X_i$ 's are independent then complete convergence implies almost sure convergence.

**Exercise 9.** Let  $(X_n)_{n\geq 1}$  be a sequence of random variables, on the same probability space, with  $\mathbb{E}(X_\ell) = \mu$  for any  $\ell$ , and a weak correlation in the following sense:  $\operatorname{Cov}(X_k, X_\ell) \leq f(|k-\ell|)$  for all indexes  $k, \ell$ , where the sequence  $(f(m))_{m\geq 0}$  converges to 0 as  $m \to \infty$ . Prove that  $(n^{-1}\sum_{k=1}^n X_k)_{n\geq 1}$  converges to  $\mu$  in  $L^2$ .

**Exercise 10.** Let  $(X_n)_{n\geq 1}$  be a sequence of i.i.d. random variables, on the same probability space, with law given by  $\mathbb{P}(X_1 = (-1)^m m) = 1/(cm^2 \log m)$  for  $m \geq 2$  (*c* is the normalization constant  $c = \sum_{m\geq 2} 1/(m^2 \log m)$ ). Prove that  $\mathbb{E}(|X_1|) = \infty$ , but there exists a constant  $\mu \notin \{\pm \infty\}$  such that  $(n^{-1} \sum_{k=1}^n X_k)_{n\geq 1}$  converges to  $\mu$  in probability. Does it converge almost surely, and in  $L^p$ ?