Probability, homework 6, due October 26.

Exercise 1. Let X have distribution function $F(x)=e^{-e^{-x}}$. Justify that such a probability measure on \mathbb{R} exists. Let $Y=F(X)$. Calculate $\mathbb{E}(Y)$ and $\operatorname{Var}(Y)$.

Exercise 2. Assume $(\Omega, \mathcal{A}, \mathbb{P})$ is such that Ω is countable and $\mathcal{A}=2^{\Omega}$. Prove that convergence in probability and convergence almost sure are the same.

Exercise 3. Let $\left(X_{i}\right)_{i \geq 1}$ be i.i.d. Gaussian with mean 1 and variance 3. Show that

$$
\lim _{n \rightarrow \infty} \frac{X_{1}+\cdots+X_{n}}{X_{1}^{2}+\cdots+X_{n}^{2}}=\frac{1}{4} \text { a.s. }
$$

Exercise 4. Let f be a continuous function on $[0,1]$. Calculate the asymptotics, as $n \rightarrow \infty$, of

$$
\int_{[0,1]^{n}} f\left(\frac{x_{1}+\cdots+x_{n}}{n}\right) \mathrm{d} x_{1} \ldots \mathrm{~d} x_{n} .
$$

Exercise 5. The goal of this exercise is to prove that any function, continuous on an interval of \mathbb{R}, can be approximated by polynomials, arbitrarily close for the L^{∞} norm (this is the Bernstein-Weierstrass theorem). Let f be a continuous function on $[0,1]$. The n-th Bernstein polynomial is

$$
B_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} x^{k}(1-x)^{n-k} f\left(\frac{k}{n}\right)
$$

a) Let $S_{n}(x)=B^{(n, x)} / n$, where $B^{(n, x)}$ is a binomial random variable with parameters n and $x: \quad B^{(n, x)}=\sum_{\ell=1}^{n} X_{i}$ where the X_{i} 's are independent and $\mathbb{P}\left(X_{i}=1\right)=x, \mathbb{P}\left(X_{i}=0\right)=1-x$. Prove that $B_{n}(x)=\mathbb{E}\left(f\left(S_{n}(x)\right)\right)$.
b) Prove that $\left\|B_{n}-f\right\|_{L^{\infty}([0,1])} \rightarrow 0$ as $n \rightarrow \infty$.

Exercise 6. Calculate

$$
\lim _{n \rightarrow \infty} e^{-n} \sum_{k=0}^{n} \frac{n^{k}}{k!}
$$

Exercise 7. Let $\alpha>0$ and, given $(\Omega, \mathcal{A}, \mathbb{P})$, let $\left(X_{n}, n \geq 1\right)$ be a sequence of independent real random variables with law $\mathbb{P}\left(X_{n}=1\right)=\frac{1}{n^{\alpha}}$ and $\mathbb{P}\left(X_{n}=0\right)=$ $1-\frac{1}{n^{\alpha}}$. Prove that $X_{n} \rightarrow 0$ in \mathcal{L}^{1}, but that almost surely

$$
\limsup _{n \rightarrow \infty} X_{n}=\left\{\begin{array}{lll}
1 & \text { if } & \alpha \leq 1 \\
0 & \text { if } & \alpha>1
\end{array} .\right.
$$

Exercise 8. A sequence of random variables $\left(X_{i}\right)_{i \geq 1}$ is said to be completely convergent to X if for any $\varepsilon>0$, we have $\sum_{i \geq 1} \mathbb{P}\left(\left|X_{i}-X\right|>\varepsilon\right)<\infty$. Prove that if the X_{i} 's are independent then complete convergence implies almost sure convergence.

Exercise 9. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of random variables, on the same probability space, with $\mathbb{E}\left(X_{\ell}\right)=\mu$ for any ℓ, and a weak correlation in the following sense: $\operatorname{Cov}\left(X_{k}, X_{\ell}\right) \leq f(|k-\ell|)$ for all indexes k, ℓ, where the sequence $(f(m))_{m \geq 0}$ converges to 0 as $m \rightarrow \infty$. Prove that $\left(n^{-1} \sum_{k=1}^{n} X_{k}\right)_{n \geq 1}$ converges to μ in L^{2}.

Exercise 10. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of i.i.d. random variables, on the same probability space, with law given by $\mathbb{P}\left(X_{1}=(-1)^{m} m\right)=1 /\left(\mathrm{cm}^{2} \log m\right)$ for $m \geq 2$ (c is the normalization constant $c=\sum_{m \geq 2} 1 /\left(m^{2} \log m\right)$). Prove that $\mathbb{E}\left(\left|X_{1}\right|\right)=\infty$, but there exists a constant $\mu \notin\{ \pm \infty\}$ such that $\left(n^{-1} \sum_{k=1}^{n} X_{k}\right)_{n \geq 1}$ converges to μ in probability. Does it converge almost surely, and in L^{p} ?

