Probability, homework 7, due November 2.

Exercise 1. Let X and Y be independent Gaussian random variables with null expectation and variance 1. Show that $\frac{X+Y}{\sqrt{2}}$ and $\frac{X-Y}{\sqrt{2}}$ are also independent $\mathcal{N}(0,1)$.

Exercise 2. Let $S_{n}=\sum_{k=1}^{n} X_{k}$ where the X_{k} 's are i.i.d. and $\mathbb{P}\left(X_{1}=1\right)=p$, $\mathbb{P}\left(X_{1}=0\right)=1-p$. Prove that for any $\varepsilon>0, \mathbb{P}\left(S_{n} / n>p+\varepsilon\right) \leq e^{-\frac{1}{4} n \varepsilon^{2}}$.

Exercise 3. Let $\left(X_{n}\right)_{n \geq 1}$ be real, i.i.d. random variables and N a random variable independent of $\left(X_{n}\right)_{n \geq 1}$ with values in \mathbb{N}. Prove that for any measurable $f: \mathbb{R} \rightarrow$ \mathbb{R}_{+}we have

$$
\mathbb{E}\left[\sum_{i=1}^{N} f\left(X_{i}\right)\right]=\mathbb{E}[N] \cdot \mathbb{E}\left[f\left(X_{1}\right)\right]
$$

Exercise 4. Let $\left(X_{n}\right)_{n \geq 1}$ be i.i.d. Bernoulli random variables with parameter $p \in(0,1)$, i.e. $\mathbb{P}\left(X_{i}=1\right)=1-\mathbb{P}\left(X_{i}=0\right)=p$. Let N be a Poisson random variable with parameter $\lambda>0$, i.e. for any $k \geq 0$ we have $\mathbb{P}(N=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}$. Assume N is independent from $\left(X_{n}\right)_{n \geq 1}$.

Let $P=\sum_{i=1}^{N} X_{i}, F=N-P$.
a) What is the joint distribution of (P, N) ?
b) Prove that P and F are independent.

Exercise 5. The number of buses stopping till time t. Let $\left(X_{n}\right)_{n \geq 1}$ be i.i.d, random variables on $(\Omega, \mathcal{A}, \mathbb{P}), X_{1}$ being an exponential random variable with parameter 1 . Define $T_{0}=0, T_{n}=X_{1}+\cdots+X_{n}$, and for any $t>0$,

$$
N_{t}=\max \left\{n \geq 0 \mid T_{n} \leq t\right\}
$$

a) For any $n \geq 1$, calculate the joint distribution of $\left(T_{1}, \ldots, T_{n}\right)$.
b) Deduce the distribution of N_{t}, for arbitrary t.

Exercise 6. The problem of the collector. Let $\left(X_{k}\right)_{k \geq 1}$ be a sequence of independent random variables uniformly distributed on $\{1, \ldots, n\}$. Let $\tau_{n}=\inf \{m \geq$ $\left.1:\left\{X_{1}, \ldots, X_{m}\right\}=\{1, \ldots, n\}\right\}$ be the first time for which all values have been observed.
a) Let $\tau_{n}^{(k)}=\inf \left\{m \geq 1:\left|\left\{X_{1}, \ldots, X_{m}\right\}\right|=k\right\}$. Prove that the random variables $\left(\tau_{n}^{(k)}-\tau_{n}^{(k-1)}\right)_{2 \leq k \leq n}$ are independent and calculate their respective distributions.
b) Deduce that $\frac{\tau_{n}}{n \log n} \rightarrow 1$ in probability as $n \rightarrow \infty$, i.e. for any $\varepsilon>0$,

$$
\mathbb{P}\left(\left|\frac{\tau_{n}}{n \log n}-1\right|>\varepsilon\right) \rightarrow 0
$$

Exercise 7. Let $\left(X_{n}\right)_{n \geq 0}$ be real, independent, random variables on $(\Omega, \mathcal{A}, \mathbb{P})$.
a) Prove that the radius of convergence R of the random series $\sum_{n \geq 0} X_{n} z^{n}$ is almost surely constant.
b) Assume also that the X_{n} 's have the same distribution. Prove that $R=0$ a.s. if $\mathbb{E}\left[\log \left(\left|X_{0}\right|\right)_{+}\right]=\infty$, and $R \geq 1$ a.s. if $\mathbb{E}\left[\log \left(\left|X_{0}\right|\right)_{+}\right]<\infty$.

Exercise 8. Let $\left(X_{i}\right)_{1 \leq i \leq n}$ be i.i.d. random variables on $(\Omega, \mathcal{A}, \mathbb{P})$, and X_{1} uniform on $[0,1]$.
a) With the help of the events $A_{\sigma}=\left\{X_{\sigma(1)}<\cdots<X_{\sigma(n)}\right\}, \sigma \in \mathcal{S}_{n}$, build n random variables Y_{1}, \ldots, Y_{n} on $(\Omega, \mathcal{A}, \mathbb{P})$ such that $Y_{1}(\omega)<\cdots<Y_{n}(\omega)$ a.s. and $\left\{Y_{1}(\omega), \ldots, Y_{n}(\omega)\right\}=\left\{X_{1}(\omega), \ldots, X_{n}(\omega)\right\}$ a.s.
b) Calculate the density of $\left(Y_{1}, \ldots, Y_{n}\right)$ and $\left(Y_{1} / Y_{2}, \ldots, Y_{n-1} / Y_{n}\right)$.

Exercise 9. Prove that there is no probability measure on \mathbb{N} such that for any $n \geq 1$, the probability of the set of multiples of n is $1 / n$.

Exercise 10. Let $\left(X_{n}\right)_{n \geq 0}$ be defined on $(\Omega, \mathcal{A}, \mathbb{P})$. Assume this sequence converges in probability (under \mathbb{P}) to X. Let \mathbb{Q} be another probability measure on (Ω, \mathcal{A}) assumed to be absolutely continuous w.r.t. \mathbb{P}. Prove that $X_{n} \rightarrow X$ in probability under \mathbb{Q}.

