Probability, homework 8, due November 16.

Exercise 1. Let X and Y be random variables on $(\Omega, \mathcal{F}, \mathbb{P})$, and \mathcal{G}, \mathcal{H} sub σ-fields of \mathcal{F} such that $\sigma(\mathcal{G}, \mathcal{H})=\mathcal{F}$. Find counterexamples to the following assertions:
(i) If $\mathbb{E}[X \mid Y]=\mathbb{E}[X]$ then X and Y are independent.
(ii) If $\mathbb{E}[X \mid \mathcal{G}]=\mathbb{E}[X \mid \mathcal{H}]=0$ then $X=0$.
(iii) If X and Y are independent then so are $\mathbb{E}[X \mid \mathcal{G}]$ and $\mathbb{E}[Y \mid \mathcal{G}]$.

Exercise 2. Let Y be an integrable random variable on $(\Omega, \mathcal{A}, \mathbb{P})$ and \mathcal{G} a sub σ-field of \mathcal{A}. Show that $|\mathbb{E}(Y \mid \mathcal{G})| \leq \mathbb{E}(|Y| \mid \mathcal{G})$ (almost surely).

Exercise 3. Let Y be an integrable random variable on $(\Omega, \mathcal{A}, \mathbb{P})$ and \mathcal{G} a sub σ field of \mathcal{A}. Suppose that $\mathcal{H} \subset \mathcal{G}$ is a sub σ-field of \mathcal{G}. Show that $\mathbb{E}(\mathbb{E}(Y \mid \mathcal{G}) \mid \mathcal{H})=$ $\mathbb{E}(Y \mid \mathcal{H})$ (almost surely).

Exercise 4. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequece of nonnegative random variables on $(\Omega, \mathcal{A}, \mathbb{P})$, and $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ a sequence of sub σ-fields of \mathcal{F}. Assume that $\mathbb{E}\left(X_{n} \mid \mathcal{F}_{n}\right)$ converges to 0 in probability.
(i) Show that X_{n} converges to 0 in probability.
(ii) Show that the reciprocal is wrong.

Exercise 5. Let $\left(X_{n}\right)_{n \geq 1}$ be independent such that $\mathbb{E}\left(X_{i}\right)=m_{i}, \operatorname{var}\left(X_{i}\right)=\sigma_{i}^{2}$, $i \geq 1$. Let $S_{n}=\sum_{i=1}^{n} X_{i}$ and $\mathcal{F}_{n}=\sigma\left(X_{i}, 1 \leq i \leq n\right)$.
a) Find sequences $\left(b_{n}\right)_{n \geq 1},\left(c_{n}\right)_{n \geq 1}$ of real numbers such that $\left(S_{n}^{2}+b_{n} S_{n}+c_{n}\right)_{n \geq 1}$ is a $\left(\mathcal{F}_{n}\right)_{n \geq 1}$-martingale.
b) Assume moreover that there is a real number λ such that $e^{\lambda X_{i}} \in \mathrm{~L}^{1}$ for any $i \geq 1$. Find a sequence $\left(a_{n}^{(\lambda)}\right)_{n \geq 1}$ such that $\left(e^{\lambda S_{n}-a_{n}^{(\lambda)}}\right)_{n \geq 1}$ is a $\left(\mathcal{F}_{n}\right)_{n \geq 1}$-martingale.

Exercise 6. Let $\left(X_{k}\right)_{k \geq 0}$ be i.i.d. random variables, $\mathcal{F}_{m}=\sigma\left(X_{1}, \ldots, X_{m}\right)$ and $Y_{m}=\prod_{k=1}^{m} X_{k}$. Under which conditions is $\left(Y_{m}\right)_{m \geq 1}$ a $\left(\mathcal{F}_{m}\right)_{m \geq 1}$-submartingale, supermartingale, martingale?

Exercise 7. Let $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ be a filtration, $\left(X_{n}\right)_{n \geq 0}$ a sequence of integrable random variables with $\mathbb{E}\left(X_{n} \mid \overline{\mathcal{F}}_{n-1}\right)=0$, and assume X_{n} is \mathcal{F}_{n}-measurable for every n. Let $S_{n}=\sum_{k=0}^{n} X_{k}$. Show that $\left(S_{n}\right)_{n \geq 0}$ is a $\left(\mathcal{F}_{n}\right)_{n \geq 0}$-martingale.

Exercise 8. Let T be a stopping time for a filtration $\left(\mathcal{F}_{n}\right)_{n \geq 1}$. Prove that \mathcal{F}_{T} is a σ-field.

Exercise 9. Let S and T be stopping times for a filtration $\left(\mathcal{F}_{n}\right)_{n \geq 1}$. Prove that $\max (S, T)$ and $\min (S, T)$ are stopping times.

Exercise 10. Let $S \leq T$ be two stopping times and $A \in \mathscr{F}_{S}$. Define $U(\omega)=S(\omega)$ if $\omega \in A, U(\omega)=T(\omega)$ if $\omega \notin A$. prove that U is a stopping time.

