Probability, homework 8, due November 23.

Exercise 1. Let $\left(S_{n}\right)_{n>0}$ be a $\left(\mathcal{F}_{n}\right)$-martingale and τ a stopping time with finite expectation. Assume that there is a $c>0$ such that, for all $n, \mathbb{E}\left(\left|S_{n+1}-S_{n}\right| \mid\right.$ $\left.\mathcal{F}_{n}\right)<c$.

Prove that $\left(S_{\tau \wedge n}\right)_{n \geq 0}$ is a uniformly integrable martingale, and that $\mathbb{E}\left(S_{\tau}\right)=$ $\mathbb{E}\left(S_{0}\right)$.

Consider now the random walk $S_{n}=\sum_{k}^{n} X_{k}$, the X_{k} 's being iid, $\mathbb{P}\left(X_{1}=1\right)=$ $\mathbb{P}\left(X_{1}=-1\right)=1 / 2$. For some $a \in \mathbb{N}^{*}$, let $\tau=\inf \left\{n \mid S_{n}=-a\right\}$. Prove that

$$
\mathbb{E}(\tau)=\infty .
$$

Exercise 2. As previously, consider the random walk $S_{n}=\sum_{k}^{n} X_{k}$, the X_{k} 's being iid, $\mathbb{P}\left(X_{1}=1\right)=\mathbb{P}\left(X_{1}=-1\right)=1 / 2, \mathcal{F}_{n}=\sigma\left(X_{i}, 0 \leq i \leq n\right)$.

Prove that ($S_{n}^{2}-n, n \geq 0$) is a (\mathcal{F}_{n})-martingale. Let τ be a bounded stopping time. Prove that $\mathbb{E}\left(S_{\tau}^{2}\right)=\mathbb{E}(\tau)$.

Take now $\tau=\inf \left\{n \mid S_{n} \in\{-a, b\}\right\}$, where $a, b \in \mathbb{N}^{*}$. Prove that $\mathbb{E}\left(S_{\tau}\right)=0$ and $\mathbb{E}\left(S_{\tau}^{2}\right)=\mathbb{E}(\tau)$. What is $\mathbb{P}\left(S_{\tau}=-a\right)$? What is $\mathbb{E}(\tau)$? Get the last result of the previous exercise by justifying the limit $b \rightarrow \infty$.

Exercise 3. Let $X_{n}, n \geq 0$, be iid complex random variables such that $\mathbb{E}\left(X_{1}\right)=$ $0,0<\mathbb{E}\left(\left|X_{1}\right|^{2}\right)<\infty$. For some parameter $\alpha>0$, let

$$
S_{n}=\sum_{k=1}^{n} \frac{X_{k}}{k^{\alpha}} .
$$

Prove that if $\alpha>1 / 2, S_{n}$ converges almost surely. What if $0<\alpha \leq 1 / 2$?
Exercise 4. In a game between a gambler and a croupier, suppose that the total capital in play is 1 . After the nth hand the proportion of the capital held by the gambler is denoted $X_{n} \in[0,1]$, thus that held by the croupier is $1-X_{n}$. We assume $X_{0}=p \in(0,1)$. The rules of the game are such that after n hands, the probability for the gambler to win the $(n+1)$ th hand is X_{n}; if he does, he gains half of the capital the croupier held after the nth hand, while if he loses he gives half of his capital. Let $\mathcal{F}_{n}=\sigma\left(X_{i}, 1 \leq i \leq n\right)$.
(i) Show that $\left(X_{n}\right)_{n \geq 0}$ is a $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ martingale.
(ii) Show that $\left(X_{n}\right)_{n \geq 1}$ converges a.s. and in L^{2} towards a limit Z.
(iii) Show that $\mathbb{E}\left(X_{n+1}^{2}\right)=\mathbb{E}\left(3 X_{n}^{2}+X_{n}\right) / 4$. Deduce that $\mathbb{E}\left(Z^{2}\right)=\mathbb{E}(Z)=p$. What is the law of Z ?
(iv) For any $n \geq 0$, let $Y_{n}=2 X_{n+1}-X_{n}$. Find the conditional law of X_{n+1} knowing \mathcal{F}_{n}. Prove that $\mathbb{P}\left(Y_{n}=0 \mid \mathcal{F}_{n}\right)=1-X_{n}, \mathbb{P}\left(Y_{n}=1 \mid \mathcal{F}_{n}\right)=X_{n}$ and express the law of Y_{n}.
(v) Let $G_{n}=\left\{Y_{n}=1\right\}, P_{n}=\left\{Y_{n}=0\right\}$. Prove that $Y_{n} \rightarrow Z$ a.s. and deduce that $\mathbb{P}\left(\liminf _{n \rightarrow \infty} G_{n}\right)=p, \mathbb{P}\left(\liminf _{n \rightarrow \infty} P_{n}\right)=1-p$. Are the variables $\left\{Y_{n}, n \geq 1\right\}$ independent?
(vi) Interpret the questions (iii), (iv), (v) in terms of gain, loss, for the gambler.

Exercise 5. Let $a>0$ be fixed, $\left(X_{i}\right)_{i>1}$ be iid, \mathbb{R}^{d}-valued random variables, uniformly distributed on the ball $\mathrm{B}(0, a)$. Set $S_{n}=x+\sum_{i=1}^{n} X_{i}$.
(i) Let f be a superharmonic function. Show that $\left(f\left(S_{n}\right)\right)_{n \geq 1}$ defines a supermartingale.
(ii) Prove that if $d \leq 2$ any nonnegative superharmonic function is constant. Does this result remain true when $d \geq 3$?

Exercise 6. Let N_{n} be the size of a population of bacteria at time n. At each time each bacterium produces a number of offspring and dies. The number of offspring is independent for each bacterium and is distributed according to the Poisson law with rate parameter $\lambda=2$. Assuming that $N_{1}=a>0$, find the probability that the population will eventually die, i.e., find $\mathbb{P}\left(\left\{\right.\right.$ there is n such that $\left.\left.N_{n}=0\right\}\right)$.

Exercise 7. Let X be a standard random walk in dimension 1, and for any positive integer $a, \tau_{a}=\inf \left\{n \geq 0 \mid X_{\tau_{a}}=a\right\}$. For any $\theta>0$, calculate

$$
\mathbb{E}\left((\cosh \theta)^{-\tau_{a}}\right)
$$

Exercise 8. Let $\left(Y_{n}\right)_{n \in \mathbb{N}^{*}}$ be a sequence of random variables, and assume $\left(Y_{n}\right)$ converges in distribution to a limiting Y. Also, on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$, the sequence of independent random variables $X:=\left(X_{n}\right)_{n \in \mathbb{N}^{*}}$ is defined, and we assume that the sequence of partial sums $\left(S_{n}\right)_{n \in \mathbb{N}}$ (i.e. $S_{0}=0$ and $\left.S_{n}:=\sum_{j=1}^{n} X_{j}\right)$ converges in distribution. Set $\left(\mathcal{F}_{n}\right)$ the natural filtration of X and $\Phi_{n}(t)=\mathbb{E}\left(\exp \left(\mathrm{i} t S_{n}\right)\right)$ for $t \in \mathbb{R}$.
(i) Establish that $\left(\Phi_{Y_{n}}(\cdot)\right)_{n \geq 1}$ converges uniformly on every compact, i.e. show that for any $a>0, \max _{t \in[-a, a]}\left|\Phi_{Y_{n}}(t)-\Phi_{Y}(t)\right| \rightarrow 0$ as $n \rightarrow \infty$. Establish moreover that there exists $a>0$ such that for any $n \geq 1, \min _{t \in[-a, a]}\left|\Phi_{Y_{n}}(t)\right| \geq$ $1 / 2$.
(ii) Show that there exists $t_{0}>0$ such that if $t \in\left[-t_{0}, t_{0}\right]$, then $\left(\exp \left(\mathrm{i} t S_{n}\right) / \Phi_{n}(t)\right)_{n \geq 0}$ is a $\left(\mathcal{F}_{n}\right)$-martingale (i.e. both its real and imaginary parts are martingales).
(iii) Prove that we can choose $t_{0}>0$ such that for any $t \in\left[-t_{0}, t_{0}\right], \lim _{n \rightarrow \infty} \exp \left(\mathrm{i} t S_{n}\right)$ exists \mathbb{P}-a.s.
(iv) Set

$$
C=\left\{(t, \omega) \in\left[-t_{0}, t_{0}\right] \times \Omega: \lim _{n \rightarrow \infty} \exp \left(\mathrm{i} t S_{n}(\omega)\right) \text { exists }\right\} .
$$

Prove that C is measurable, i.e. in the product of $\mathcal{B}\left(\left[-t_{0}, t_{0}\right]\right)$ with \mathcal{F}.
(v) Establish that $\int_{-t_{0}}^{t_{0}} \mathbb{1}_{C}(t, \omega) \mathbb{P}(\mathrm{d} \omega) \mathrm{d} t=2 t_{0}$.
(vi) Prove that $\lim _{n \rightarrow \infty} S_{n}$ exists \mathbb{P}-a.s.

