Probability, homework 1, due September 13.

Exercise 1. Let $(\mathcal{G}_{\alpha})_{\alpha \in A}$ be an arbitrary family of σ -fields defined on an abstract space Ω , with A possibly uncountable. Show that $\bigcap_{\alpha \in A} \mathcal{G}_{\alpha}$ is also a σ -field.

Exercise 2. Let $\emptyset \subsetneq A \subsetneq B \subsetneq \Omega$ (these are strict inclusions). What is the σ -field generated by $\{A, B\}$?

Exercise 3. Let \mathcal{F}, \mathcal{G} be σ -fields for the same Ω . Is $\mathcal{F} \cup \mathcal{G}$ a σ -field?

Exercise 4. For $\Omega = \mathbb{N}$ and $n \ge 0$, let $\mathcal{F}_n = \sigma(\{\{0\}, \dots, \{n\}\})$. Show that $(\mathcal{F}_n)_{n\ge 0}$ is a non-decreasing sequence but that $\bigcup_{n>0}\mathcal{F}_n$ is a not a σ -field.

Exercise 5. Let Ω be an infinite set (countable or not). Let \mathcal{A} be the set of subsets of Ω that are either finite or with finite complement in Ω . Prove that \mathcal{A} is a field but not a σ -field.

Exercise 6. Can you build an infinite, countable σ -field?

Exercise 7. A monotone class is a collection \mathcal{M} of sets closed under both monotone increasing and monotone decreasing (i.e. if $A_i \in \mathcal{M}$ and either $A_i \uparrow A$ or $A_i \downarrow A$ then $A \in \mathcal{M}$)

Prove that if $\mathcal{A} \subset \mathcal{M}$ with \mathcal{A} a field and \mathcal{M} a monotone class, then $\sigma(\mathcal{A}) \subset \mathcal{M}$.

Exercise 8. Let \mathbb{P} be a probability measure on Ω , endowed with a σ -field \mathcal{A} .

(i) What is the meaning of the following events, where all A_n 's are elements of \mathcal{A} ?

$$\liminf_{n \to \infty} A_n = \bigcup_{n \ge 1} \bigcap_{k \ge n} A_k, \quad \limsup_{n \to \infty} A_n = \bigcap_{n \ge 1} \bigcup_{k \ge n} A_k.$$

- (ii) Prove that $\limsup_{n\to\infty} A_n$ and $\liminf_{n\to\infty} A_n$ are in \mathcal{A} .
- (iii) In the special case $\Omega = \mathbb{R}$, for any $p \ge 1$, let

$$A_{2p} = \left[-1, 2 + \frac{1}{2p}\right), \quad A_{2p+1} = \left(-2 - \frac{1}{2p+1}, 1\right].$$

What are $\liminf_{n\to\infty} A_n$ and $\limsup_{n\to\infty} A_n$?

(iv) Prove that the following always holds:

$$\mathbb{P}\left(\liminf_{n \to \infty} A_n\right) \le \liminf_{n \to \infty} \mathbb{P}\left(A_n\right), \mathbb{P}\left(\limsup_{n \to \infty} A_n\right) \ge \limsup_{n \to \infty} \mathbb{P}\left(A_n\right)$$

Exercise 9. The symmetric difference of two events A and B, denoted $A \triangle B$, is the event that precisely one of them occurs: $A \triangle B = (A \cup B) \setminus (A \cap B)$.

(i) Write a formula for $A \triangle B$ that only involves the operations of union, intersection and complement, but no set difference.

- (ii) Define $d(A, B) = \mathbb{P}(A \triangle B)$. Show that for any three events A, B, C, $d(A,B)+d(B,C)-d(A,C)=2\left(\mathbb{P}\left(A\cap B^c\cap C\right)+\mathbb{P}\left(A^c\cap B\cap C^c\right)\right).$
- (iii) Assume $A \subset B \subset C$. Prove that d(A, C) = d(A, B) + d(B, C).

Exercise 10. Prove the Bonferroni inequalities: if $A_i \in \mathcal{A}$ is a sequence of events, then

- $\begin{array}{ll} (\mathrm{i}) & \mathbb{P}\left(\cup_{i=1}^{n}A_{i}\right) \geq \sum_{i=1}^{n}\mathbb{P}(A_{i}) \sum_{i < j}\mathbb{P}(A_{i} \cap A_{j}), \\ (\mathrm{ii}) & \mathbb{P}\left(\cup_{i=1}^{n}A_{i}\right) \leq \sum_{i=1}^{n}\mathbb{P}(A_{i}) \sum_{i < j}\mathbb{P}(A_{i} \cap A_{j}) + \sum_{i < j < k}\mathbb{P}(A_{i} \cap A_{j} \cap A_{k}). \end{array}$

 $\mathbf{2}$