Probability, homework 10, due December 6.

Exercise 1. Consider a Markov chain X with state space \mathbb{N} and transition matrix $\pi(0,0)=r_{0}, \pi(0,1)=p_{0}$, and $\forall i \geq 1, \pi(i, i-1)=q_{i}, \pi(i, i)=r_{i}, \pi(i, i+1)=p_{i}$, with $p_{0}, r_{0}>0, p_{0}+r_{0}=1$ and for all $i \geq 1, p_{i}, q_{i}>0, p_{i}+q_{i}+r_{i}=1$. Prove that the chain is irreducible, aperiodic. Give a necessary and sufficient condition for the chain to have an invariant probability measure.

Exercise 2. Let (G, \cdot) be a group, μ a probability measure on G and X the Markov chain such that $\pi(g, h \cdot g)=\mu(h)$. We call such a process X a random walk on G with jump kernel μ.
(i) Explain why the usual random walk on \mathbb{Z}^{d} is such process. Same question for the usual random walk on $(\mathbb{Z} / n \mathbb{Z})^{d}, n \geq 1$.
(ii) Consider the following shuffling of a deck of $n \geq 2$ cards: pick two such distinct cards uniformly at random and exhange their positions in the deck. Show that this is also an example of a random walk on a group.
(iii) Let $\mathcal{H}=\left\{h_{1} \cdot h_{2} \cdots \cdot h_{n}, \mu\left(h_{i}\right)>0,1 \leq i \leq n, n \in \mathbb{N}\right\}$. Discuss irreductibility of X depending on \mathcal{H}.
(iv) If X is irreducible on finite G, what are the invariant probability measures? What if G is not finite?
(v) Make some search to define a reversible Markov chain. In the context of this exercise, show that X is reversible if and only if $\mu(h)=\mu\left(h^{-1}\right)$ for any $h \in G$.
(vi) Give an example of an irreducible random walk on a group which is not reversible.
Exercise 3. Let $\left(X_{n}\right)_{n \geq 1}$ be independent such that $\mathbb{E}\left(X_{i}\right)=m_{i}, \operatorname{var}\left(X_{i}\right)=\sigma_{i}^{2}$, $i \geq 1$. Let $S_{n}=\sum_{i=1}^{n} X_{i}$ and $\mathcal{F}_{n}=\sigma\left(X_{i}, 1 \leq i \leq n\right)$.
a) Find sequences $\left(b_{n}\right)_{n \geq 1},\left(c_{n}\right)_{n \geq 1}$ of real numbers such that $\left(S_{n}^{2}+b_{n} S_{n}+c_{n}\right)_{n \geq 1}$ is a $\left(\mathcal{F}_{n}\right)_{n \geq 1}$-martingale.
b) Assume moreover that there is a real number λ such that $e^{\lambda X_{i}} \in \mathrm{~L}^{1}$ for any $i \geq 1$. Find a sequence $\left(a_{n}^{(\lambda)}\right)_{n \geq 1}$ such that $\left(e^{\lambda S_{n}-a_{n}^{(\lambda)}}\right)_{n \geq 1}$ is a $\left(\mathcal{F}_{n}\right)_{n \geq 1}$-martingale.

Exercise 4. Let $\left(X_{k}\right)_{k \geq 0}$ be i.i.d. random variables, $\mathcal{F}_{m}=\sigma\left(X_{1}, \ldots, X_{m}\right)$ and $Y_{m}=\prod_{k=1}^{m} X_{k}$. Under which conditions is $\left(Y_{m}\right)_{m \geq 1}$ a $\left(\mathcal{F}_{m}\right)_{m \geq 1}$-submartingale, supermartingale, martingale?

Exercise 5. Let $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ be a filtration, $\left(X_{n}\right)_{n \geq 0}$ a sequence of integrable random variables with $\mathbb{E}\left(X_{n} \mid \mathcal{F}_{n-1}\right)=0$, and assume X_{n} is \mathcal{F}_{n}-measurable for every n. Let $S_{n}=\sum_{k=0}^{n} X_{k}$. Show that $\left(S_{n}\right)_{n \geq 0}$ is a $\left(\mathcal{F}_{n}\right)_{n \geq 0}$-martingale.

Exercise 6. Let $a>0$ be fixed, $\left(X_{i}\right)_{i \geq 1}$ be iid, \mathbb{R}^{d}-valued random variables, uniformly distributed on the ball $\mathrm{B}(0, a)$. Set $S_{n}=x+\sum_{i=1}^{n} X_{i}$.
(i) Let f be a superharmonic function. Show that $\left(f\left(S_{n}\right)\right)_{n \geq 1}$ defines a supermartingale.
(ii) Prove that if $d \leq 2$ any nonnegative superharmonic function is constant. Does this result remain true when $d \geq 3$?

In the following exercise you can use the following fact: If a martingale is a.s. bounded by a deterministic constant, it converges almost surely.

Exercise 7. Let $\left(Y_{n}\right)_{n \in \mathbb{N}^{*}}$ be a sequence of random variables, and assume $\left(Y_{n}\right)$ converges in distribution to a limiting Y. Also, on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$, the sequence of independent random variables $X:=\left(X_{n}\right)_{n \in \mathbb{N}^{*}}$ is defined, and we assume that the sequence of partial sums $\left(S_{n}\right)_{n \in \mathbb{N}}$ (i.e. $S_{0}=0$ and $\left.S_{n}:=\sum_{j=1}^{n} X_{j}\right)$ converges in distribution. Set $\left(\mathcal{F}_{n}\right)$ the natural filtration of X and $\Phi_{n}(t)=\mathbb{E}\left(\exp \left(\mathrm{i} t S_{n}\right)\right)$ for $t \in \mathbb{R}$.
(i) Establish that $\left(\Phi_{Y_{n}}(\cdot)\right)_{n \geq 1}$ converges uniformly on every compact, i.e. show that for any $a>0, \max _{t \in[-a, a]}\left|\Phi_{Y_{n}}(t)-\Phi_{Y}(t)\right| \rightarrow 0$ as $n \rightarrow \infty$. Establish moreover that there exists $a>0$ such that for any $n \geq 1, \min _{t \in[-a, a]}\left|\Phi_{Y_{n}}(t)\right| \geq$ $1 / 2$.
(ii) Show that there exists $t_{0}>0$ such that if $t \in\left[-t_{0}, t_{0}\right]$, then $\left(\exp \left(\mathrm{i} t S_{n}\right) / \Phi_{n}(t)\right)_{n \geq 0}$ is a $\left(\mathcal{F}_{n}\right)$-martingale (i.e. both its real and imaginary parts are martingales).
(iii) Prove that we can choose $t_{0}>0$ such that for any $t \in\left[-t_{0}, t_{0}\right], \lim _{n \rightarrow \infty} \exp \left(\mathrm{i} t S_{n}\right)$ exists \mathbb{P}-a.s.
(iv) Set

$$
C=\left\{(t, \omega) \in\left[-t_{0}, t_{0}\right] \times \Omega: \lim _{n \rightarrow \infty} \exp \left(\mathrm{i} t S_{n}(\omega)\right) \text { exists }\right\} .
$$

Prove that C is measurable, i.e. in the product of $\mathcal{B}\left(\left[-t_{0}, t_{0}\right]\right)$ with \mathcal{F}.
(v) Establish that $\int_{-t_{0}}^{t_{0}} \mathbb{1}_{C}(t, \omega) \mathbb{P}(\mathrm{d} \omega) \mathrm{d} t=2 t_{0}$.
(vi) Prove that $\lim _{n \rightarrow \infty} S_{n}$ exists \mathbb{P}-a.s.

