Probability, homework 10, due December 6.

Exercise 1. Consider a Markov chain X with state space \mathbb{N} and transition matrix $\pi(0,0) = r_0$, $\pi(0,1) = p_0$, and $\forall i \geq 1$, $\pi(i,i-1) = q_i$, $\pi(i,i) = r_i$, $\pi(i,i+1) = p_i$, with $p_0, r_0 > 0$, $p_0 + r_0 = 1$ and for all $i \geq 1$, $p_i, q_i > 0$, $p_i + q_i + r_i = 1$. Prove that the chain is irreducible, aperiodic. Give a necessary and sufficient condition for the chain to have an invariant probability measure.

Exercise 2. Let (G, \cdot) be a group, μ a probability measure on G and X the Markov chain such that $\pi(g, h \cdot g) = \mu(h)$. We call such a process X a random walk on G with jump kernel μ .

- (i) Explain why the usual random walk on \mathbb{Z}^d is such process. Same question for the usual random walk on $(\mathbb{Z}/n\mathbb{Z})^d$, $n \ge 1$.
- (ii) Consider the following shuffling of a deck of $n \ge 2$ cards: pick two such distinct cards uniformly at random and exhange their positions in the deck. Show that this is also an example of a random walk on a group.
- (iii) Let $\mathcal{H} = \{h_1 \cdot h_2 \cdot \cdots \cdot h_n, \mu(h_i) > 0, 1 \le i \le n, n \in \mathbb{N}\}$. Discuss irreductibility of X depending on \mathcal{H} .
- (iv) If X is irreducible on finite G, what are the invariant probability measures? What if G is not finite?
- (v) Make some search to define a reversible Markov chain. In the context of this exercise, show that X is reversible if and only if $\mu(h) = \mu(h^{-1})$ for any $h \in G$.
- (vi) Give an example of an irreducible random walk on a group which is not reversible.

Exercise 3. Let $(X_n)_{n\geq 1}$ be independent such that $\mathbb{E}(X_i) = m_i$, $\operatorname{var}(X_i) = \sigma_i^2$, $i \geq 1$. Let $S_n = \sum_{i=1}^n X_i$ and $\mathcal{F}_n = \sigma(X_i, 1 \leq i \leq n)$.

a) Find sequences $(b_n)_{n\geq 1}$, $(c_n)_{n\geq 1}$ of real numbers such that $(S_n^2+b_nS_n+c_n)_{n\geq 1}$ is a $(\mathcal{F}_n)_{n\geq 1}$ -martingale.

b) Assume moreover that there is a real number λ such that $e^{\lambda X_i} \in L^1$ for any $i \geq 1$. Find a sequence $(a_n^{(\lambda)})_{n\geq 1}$ such that $(e^{\lambda S_n - a_n^{(\lambda)}})_{n\geq 1}$ is a $(\mathcal{F}_n)_{n\geq 1}$ -martingale.

Exercise 4. Let $(X_k)_{k\geq 0}$ be i.i.d. random variables, $\mathcal{F}_m = \sigma(X_1, \ldots, X_m)$ and $Y_m = \prod_{k=1}^m X_k$. Under which conditions is $(Y_m)_{m\geq 1}$ a $(\mathcal{F}_m)_{m\geq 1}$ -submartingale, supermartingale, martingale?

Exercise 5. Let $(\mathcal{F}_n)_{n\geq 0}$ be a filtration, $(X_n)_{n\geq 0}$ a sequence of integrable random variables with $\mathbb{E}(X_n | \mathcal{F}_{n-1}) = 0$, and assume X_n is \mathcal{F}_n -measurable for every n. Let $S_n = \sum_{k=0}^n X_k$. Show that $(S_n)_{n\geq 0}$ is a $(\mathcal{F}_n)_{n\geq 0}$ -martingale.

Exercise 6. Let a > 0 be fixed, $(X_i)_{i \ge 1}$ be iid, \mathbb{R}^d -valued random variables, uniformly distributed on the ball B(0, a). Set $S_n = x + \sum_{i=1}^n X_i$.

- (i) Let f be a superharmonic function. Show that $(f(S_n))_{n\geq 1}$ defines a supermartingale.
- (ii) Prove that if $d \le 2$ any nonnegative superharmonic function is constant. Does this result remain true when $d \ge 3$?

In the following exercise you can use the following fact: If a martingale is a.s. bounded by a deterministic constant, it converges almost surely.

Exercise 7. Let $(Y_n)_{n \in \mathbb{N}^*}$ be a sequence of random variables, and assume (Y_n) converges in distribution to a limiting Y. Also, on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$, the sequence of independent random variables $X := (X_n)_{n \in \mathbb{N}^*}$ is defined, and we assume that the sequence of partial sums $(S_n)_{n\in\mathbb{N}}$ (i.e. $S_0=0$ and $S_n:=\sum_{j=1}^n X_j$) converges in distribution. Set (\mathcal{F}_n) the natural filtration of X and $\Phi_n(t) = \mathbb{E}(\exp(itS_n))$ for $t \in \mathbb{R}$.

- (i) Establish that $(\Phi_{Y_n}(\cdot))_{n\geq 1}$ converges uniformly on every compact, i.e. show that for any a > 0, $\max_{t \in [-a,a]} |\Phi_{Y_n}(t) - \Phi_Y(t)| \to 0$ as $n \to \infty$. Establish moreover that there exists a > 0 such that for any $n \ge 1$, $\min_{t \in [-a,a]} |\Phi_{Y_n}(t)| \ge 1$ 1/2.
- (ii) Show that there exists $t_0 > 0$ such that if $t \in [-t_0, t_0]$, then $(\exp(itS_n)/\Phi_n(t))_{n>0}$ is a (\mathcal{F}_n) -martingale (i.e. both its real and imaginary parts are martingales).
- (iii) Prove that we can choose $t_0 > 0$ such that for any $t \in [-t_0, t_0]$, $\lim_{n \to \infty} \exp(itS_n)$ exists \mathbb{P} -a.s.
- (iv) Set

 $C = \{(t,\omega) \in [-t_0, t_0] \times \Omega : \lim_{n \to \infty} \exp(\mathrm{i} t S_n(\omega)) \text{ exists} \}.$

Prove that C is measurable, i.e. in the product of $\mathcal{B}([-t_0, t_0])$ with \mathcal{F} .

- (v) Establish that $\int_{-t_0}^{t_0} \mathbb{1}_C(t,\omega) \mathbb{P}(d\omega) dt = 2t_0$. (vi) Prove that $\lim_{n\to\infty} S_n$ exists \mathbb{P} -a.s.