Exercise 1. Let $(\Omega, \mathcal{A}, \mathbb{P})$ be a probability space. Prove that if $A \cap B = \emptyset$ and A, B are independent, then $\mathbb{P}(A) = 0$ or $\mathbb{P}(B) = 0$.

Exercise 2. Let X be a nonnegative random variable with null expectation. Prove that it is 0 almost surely.

Exercise 3. Calculate $\mathbb{E}(X)$ for the following probability measures \mathbb{P}^X .

- (i) \mathbb{P}^X has Gaussian density $\frac{1}{\sqrt{2\pi\sigma}}e^{-(x-\mu)^2/(2\sigma^2)}$, for some $\sigma > 0$ and $\mu \in \mathbb{R}$;
- (ii) \mathbb{P}^X has exponential dentity $\lambda e^{-\lambda x} \mathbb{1}_{x \ge 0}$ for some $\lambda > 0$;
- (iii) $\mathbb{P}^X = p\delta_a + q\delta_b$ where $p + q = 1, p, q \ge 0$ and $a, b \in \mathbb{R}$;
- (iv) \mathbb{P}^X is the Poisson distribution: $\mathbb{P}^X(\{n\}) = e^{-\lambda} \frac{\lambda^n}{n!}$ for any integer $n \ge 0$, for some $\lambda > 0$.

Exercise 4. Let X be a standard Gaussian random variable. What is the density of $1/X^2$?

Exercise 5. Let X be uniformly distributed on [0,1] and $\lambda > 0$. Show that $-\lambda^{-1} \log X$ has the same distribution as an exponential random variable with parameter λ .

Exercise 6. A samouraï wants to create a triangle with a (rigid) spaghetti. With his saber, he cuts this spaghetti on two places, chosen uniformly and independently along this traditional pasta. What is the probability that he can create a triangle with sides these three pieces of spaghetti?

Exercise 7. Assume that X_1, X_2, \ldots are independent random variables uniformly distributed on [0, 1]. Let $Y^{(n)} = n \inf\{X_i, 1 \leq i \leq n\}$. Prove that it converges weakly to an exponential random variable, i.e. for any continuous bounded function $f : \mathbb{R}^+ \to \mathbb{R}$,

$$\mathbb{E}\left(f(Y^{(n)})\right) \xrightarrow[n \to \infty]{} \int_{\mathbb{R}^+} f(u)e^{-u} \mathrm{d}u.$$

Exercise 8. Let n and m be random numbers chosen independently and uniformly on $\llbracket 1, N \rrbracket$. What are Ω, \mathcal{A} and \mathbb{P} (which all implicitly depend on N)? Prove that $\mathbb{P}(n \wedge m = 1) \xrightarrow[N \to \infty]{} \zeta(2)^{-1}$ where $\zeta(2) = \prod_{p \in \mathcal{P}} (1 - p^{-2})^{-1} = \sum_{n \ge 1} n^{-2} = \frac{\pi^2}{6}$ (you don't have to prove these equalities). Here \mathcal{P} is the set of prime numbers and $n \wedge m = 1$ means that their greatest common divisor is 1.

Exercise 9. Let $\epsilon > 0$ and X be uniformly distributed on [0, 1]. Prove that, almost surely (i.e. the following event has probability 1), there exists only a finite number of rationals $\frac{p}{q}$, with $p \wedge q = 1$, such that

$$\left| X - \frac{p}{q} \right| < \frac{1}{q^{2+\epsilon}}.$$

Exercise 10. You toss a coin repeatedly and independently. The probability to get a head is p, a tail is 1-p. Let A_k be the following event: k or more consecutive heads occur amongst the tosses numbered $2^k, \ldots, 2^{k+1} - 1$. Prove that $\mathbb{P}(A_k \text{ i.o.}) = 1$ if $p \geq 1/2, 0$ otherwise.

Here, i.o. stands for "infinitely often", and A_k i.o. is the event $\bigcap_{n\geq 1} \bigcup_{m\geq n} A_m$.