Probability, homework 5, due October 18.

Exercise 1. Prove that if a sequence of real random variables $\left(X_{n}\right)$ converge in distribution to X, and $\left(Y_{n}\right)$ converges in distribution to a constant c, then $X_{n}+Y_{n}$ converges in distribution to $X+c$.

Exercise 2. Assume that (X, Y) has joint density

$$
c e^{-\left(1+x^{2}\right)\left(1+y^{2}\right)}
$$

where c is properly chosen. Are X and Y Gaussian random variables? Is (X, Y) a Gaussian vector?

Exercise 3. Let $\left(X_{i}\right)_{i \geq 1}$ be a sequence of independent random variables, with X_{i} uniform on $[-i, i]$. Let $S_{n}=X_{1}+\cdots+X_{n}$. Prove that $S_{n} / n^{3 / 2}$ converges in distribution and describe the limit.

Exercise 4. Find a probability distribution μ of a \mathbb{Z}-valued random variable which is symmetric $(\mu(\{i\})=\mu(\{-i\})$ for any $i \in \mathbb{Z})$, not integrable, but such that its characteristic function is differentiable at 0 .

Exercise 5. For any probability measure μ supported on \mathbb{R}_{+}, one defines the Laplace transform as

$$
\mathscr{L}_{\mu}(\lambda)=\int_{0}^{\infty} e^{-\lambda x} \mathrm{~d} \mu(x), \lambda \geq 0
$$

(1) Prove that \mathscr{L}_{μ} is well-defined, continuous on \mathbb{R}_{+}and \mathscr{C}^{∞} on \mathbb{R}_{+}^{*}.
(2) Prove that \mathscr{L}_{μ} characterizes the probability measure μ supported on \mathbb{R}_{+}.
(3) Assume that for a sequence $\left(\mu_{n}\right)_{n \geq 1}$ of probability measure supported on \mathbb{R}_{+}, one has $\mathscr{L}_{\mu_{n}}(\lambda) \rightarrow \ell(\lambda)$ for any $\lambda \geq 0$, and ℓ is right-continuous at 0 . Prove that $\left(\mu_{n}\right)_{n \geq 1}$ is tight, and that it converges weakly to a measure μ such that $\ell=\mathscr{L}_{\mu}$.
Long problem. The goal of this problem is to prove the iterated logarithm law, first for Gaussian random variables. In other words, for $X_{1}, X_{2} \ldots$ i.i.d. standard Gaussian random variables, denoting $S_{n}=X_{1}+\cdots+X_{n}$, we have

$$
\begin{equation*}
\mathbb{P}\left(\limsup _{n \rightarrow \infty} \frac{S_{n}}{\sqrt{2 n \log \log n}}=1\right)=1 \tag{0.1}
\end{equation*}
$$

(1) Prove that

$$
\mathbb{P}\left(X_{1}>\lambda\right) \underset{\lambda \rightarrow \infty}{\sim} \frac{1}{\lambda \sqrt{2 \pi}} e^{-\frac{\lambda^{2}}{2}}
$$

In the following questions we denote $f(n)=\sqrt{2 n \log \log n}, \lambda>1, c, \alpha>0$, $A_{k}=\left\{S_{\left\lfloor\lambda^{k}\right\rfloor} \geq c f\left(\lambda^{k}\right)\right\}, C_{k}=\left\{S_{\left\lfloor\lambda^{k+1}\right\rfloor}-S_{\left\lfloor\lambda^{k}\right\rfloor} \geq c f\left(\lambda^{k+1}-\lambda^{k}\right)\right\}$ and $D_{k}=$ $\left\{\sup _{n \in \llbracket \lambda^{k}, \lambda^{k+1} \rrbracket} \frac{S_{n}-S_{\left\lfloor\lambda^{k}\right\rfloor}}{f\left(\lambda^{k}\right)} \geq \alpha\right\}$.
(2) Prove that for any $c>1$ we have $\sum_{k \geq 1} \mathbb{P}\left(A_{k}\right)<\infty$ and

$$
\limsup _{k \rightarrow \infty} \frac{S_{\left\lfloor\lambda^{k}\right\rfloor}}{f\left(\lambda^{k}\right)} \leq 1 \text { a.s. }
$$

(3) Prove that for any $c<1$ we have $\sum_{k \geq 1} \mathbb{P}\left(C_{k}\right)=\infty$ and

$$
\mathbb{P}\left(C_{k} \text { i.o. }\right)=1
$$

(4) Let $\varepsilon>0$ and choose $c=1-\varepsilon / 10$. Prove that almost surely the following inequality holds for infinitely many k :

$$
\frac{S_{\left\lfloor\lambda^{k+1}\right\rfloor}}{f\left(\lambda^{k+1}\right)} \geq c \frac{f\left(\lambda^{k+1}-\lambda^{k}\right)}{f\left(\lambda^{k+1}\right)}-(1+\varepsilon) \frac{f\left(\lambda^{k}\right)}{f\left(\lambda^{k+1}\right)}
$$

(5) By choosing a large enough λ in the previous inequality, prove that almost surely

$$
\limsup _{n \rightarrow \infty} \frac{S_{n}}{f(n)} \geq 1
$$

(6) Prove that for any $n \in \llbracket \lambda^{k}, \lambda^{k+1} \rrbracket$ and $S_{n}>0$ we have

$$
\frac{S_{n}}{f(n)} \leq \frac{S_{\left\lfloor\lambda^{k}\right\rfloor}}{f\left(\left\lfloor\lambda^{k}\right\rfloor\right)}+\frac{S_{n}-S_{\left\lfloor\lambda^{k}\right\rfloor}}{f\left(\left\lfloor\lambda^{k}\right\rfloor\right)}
$$

(7) Prove that

$$
\mathbb{P}\left(D_{k}\right) \underset{k \rightarrow \infty}{\sim} 2 \mathbb{P}\left(X_{1} \geq \frac{\alpha f\left(\lambda^{k}\right)}{\sqrt{\lambda^{k+1}-\lambda^{k}}}\right) \underset{k \rightarrow \infty}{\sim} \frac{c}{\sqrt{\log \lambda}}\left(\frac{1}{k}\right)^{\frac{\alpha^{2}}{\lambda-1}}
$$

(8) Prove that for $\alpha^{2}>\lambda-1$, almost surely

$$
\limsup _{n \rightarrow \infty} \frac{S_{n}}{f(n)} \leq \limsup _{n \rightarrow \infty} \frac{S_{\left\lfloor\lambda^{k}\right\rfloor}}{f\left(\lambda^{k}\right)}+\alpha .
$$

(9) By choosing appropriate λ and α, prove that almost surely

$$
\limsup _{n \rightarrow \infty} \frac{S_{n}}{f(n)} \leq 1
$$

(10) State a result similar to (0.1) for i.i.d. uniformly bounded random variables. Which steps in the above proof need to be modified to prove this universality result? How?

