Probability, homework 6, due October 25.

Exercise 1. Assume $(\Omega, \mathcal{A}, \mathbb{P})$ is such that Ω is countable and $\mathcal{A} = 2^{\Omega}$. Prove that convergence in probability and convergence almost sure are the same.

Exercise 2. Let $(X_i)_{i>1}$ be i.i.d. Gaussian with mean 1 and variance 3. Show that

$$\lim_{n \to \infty} \frac{X_1 + \dots + X_n}{X_1^2 + \dots + X_n^2} = \frac{1}{4} \text{ a.s}$$

Exercise 3. Let f be a continuous function on [0, 1]. Calculate the asymptotics, as $n \to \infty$, of

$$\int_{[0,1]^n} f\left(\frac{x_1+\cdots+x_n}{n}\right) \mathrm{d}x_1 \ldots \mathrm{d}x_n.$$

Exercise 4. The goal of this exercise is to prove that any function, continuous on an interval of \mathbb{R} , can be approximated by polynomials, arbitrarily close for the L^{∞} norm (this is the Bernstein-Weierstrass theorem). Let f be a continuous function on [0, 1]. The *n*-th Bernstein polynomial is

$$B_n(x) = \sum_{k=0}^n \binom{n}{k} x^k (1-x)^{n-k} f\left(\frac{k}{n}\right).$$

a) Let $S_n(x) = B^{(n,x)}/n$, where $B^{(n,x)}$ is a binomial random variable with parameters n and x: $B^{(n,x)} = \sum_{\ell=1}^{n} X_{\ell}$ where the X_{ℓ} 's are independent and $\mathbb{P}(X_{\ell} = 1)$. $\mathbb{P}(X_i = 1) = x, \mathbb{P}(X_i = 0) = 1 - x.$ Prove that $B_n(x) = \mathbb{E}(f(S_n(x))).$ b) Prove that $||B_n - f||_{L^{\infty}([0,1])} \to 0$ as $n \to \infty$.

Exercise 5. Calculate

$$\lim_{n \to \infty} e^{-n} \sum_{k=0}^n \frac{n^k}{k!}.$$

Exercise 6. Let $\alpha > 0$ and, given $(\Omega, \mathcal{A}, \mathbb{P})$, let $(X_n, n \geq 1)$ be a sequence of independent real random variables with law $\mathbb{P}(X_n = 1) = \frac{1}{n^{\alpha}}$ and $\mathbb{P}(X_n = 0) =$ $1 - \frac{1}{n^{\alpha}}$. Prove that $X_n \to 0$ in \mathcal{L}^1 , but that almost surely

$$\limsup_{n \to \infty} X_n = \begin{cases} 1 & \text{if } \alpha \le 1 \\ 0 & \text{if } \alpha > 1 \end{cases}$$

Exercise 7. A sequence of random variables $(X_i)_{i\geq 1}$ is said to be completely convergent to X if for any $\varepsilon > 0$, we have $\sum_{i \ge 1} \mathbb{P}(|\overline{X_i} - X| > \varepsilon) < \infty$. Prove that complete convergence implies almost sure convergence.

Exercise 8. Let $(X_n)_{n\geq 1}$ be a sequence of random variables, on the same probability space, with $\mathbb{E}(X_{\ell}) = \mu$ for any ℓ , and a weak correlation in the following sense: $\operatorname{Cov}(X_k, X_\ell) \leq f(|k-\ell|)$ for all indexes k, ℓ , where the sequence $(f(m))_{m\geq 0}$ converges to 0 as $m \to \infty$. Prove that $(n^{-1} \sum_{k=1}^{n} X_k)_{n \ge 1}$ converges to μ in L^2 .

Long problem. The goal is to prove the Erdős-Kac theorem: if w(m) denotes the number of distinct prime factors of m and k is a random variable uniformly distributed on [1, n], then the following convergence in distribution holds:

$$\frac{w(k) - \log \log n}{\sqrt{\log \log n}} \underset{n \to \infty}{\longrightarrow} \mathscr{N}(0, 1).$$

(i) Prove that if $(X_n)_{n\geq 1}$ converges in distribution to $\mathscr{N}(0,1)$ and $\sup_{n\geq 1} \mathbb{E}[X_n^{2k}] < \infty$ ∞ for any $k \in \mathbb{N}$, then $\lim_{n \to \infty} \mathbb{E}[X_n^k] = \mathbb{E}[\mathscr{N}(0,1)^k]$ for any $k \in \mathbb{N}$.

(ii) Prove that for any $x \in \mathbb{R}$ and $d \ge 1$ we have

$$\left| e^{\mathbf{i}x} - \sum_{\ell=0}^{d} \frac{(\mathbf{i}x)^{\ell}}{\ell!} \right| \le \frac{|x|^{d+1}}{(d+1)!}.$$

- (iii) Assume that $\lim_{n\to\infty} \mathbb{E}[X_n^k] = \mathbb{E}[\mathscr{N}(0,1)^k]$ for any $k \in \mathbb{N}$. Prove that X_n converges in distribution to X.
- (iv) Let $w_y(m)$ be the number of prime factors of m which are smaller than y. Let $(B_p)_p$ prime be independent random variables such that $\mathbb{P}(B_p = 1) = 1 - \mathbb{P}(B_p = 0) = \frac{1}{p}$, $W_y = \sum_{p \leq y} B_p$, $\mu_y = \sum_{p \leq y} \frac{1}{p}$, $\sigma_y^2 = \sum_{p \leq y} (\frac{1}{p} - \frac{1}{p^2})$. Prove that if $y = n^{o(1)}$, then for any $d \in \mathbb{N}$ we have

$$\mathbb{E}\left[\left(\frac{w_y(k) - \mu_y}{\sigma_y}\right)^d\right] - \mathbb{E}\left[\left(\frac{W_y - \mu_y}{\sigma_y}\right)^d\right] \to 0$$

as $n \to \infty$.

(v) Conclude.