Probability, homework 7, due November 8.

Exercise 1. Let X and Y be independent Gaussian random variables with null expectation and variance 1 . Show that $\frac{X+Y}{\sqrt{2}}$ and $\frac{X-Y}{\sqrt{2}}$ are also independent $\mathcal{N}(0,1)$.

Exercise 2. Let $\left(X_{n}\right)_{n \geq 0}$ be a sequence of i.i.d random variables, with uniform distribution on $[0,1]$. Let $Y_{n}=\left(X_{n}\right)^{n}$.
(1) Calculate the distribution of Y_{n}.
(2) Show that $\left(Y_{n}\right)_{n \geq 0}$ converges to 0 in probability.
(3) Show that $\left(Y_{n}\right)_{n \geq 0}$ converges in L^{1}.
(4) Show that almost surely $\left(Y_{n}\right)_{n \geq 0}$ does not converge.

Exercise 3. Let $\left(X_{n}\right)_{n \geq 1}$ be i.i.d. Bernoulli random variables with parameter $p \in(0,1)$, i.e. $\mathbb{P}\left(X_{i}=1\right)=1-\mathbb{P}\left(X_{i}=0\right)=p$. Let N be a Poisson random variable with parameter $\lambda>0$, i.e. for any $k \geq 0$ we have $\mathbb{P}(N=k)=e^{-\lambda} \frac{\lambda^{k}}{k!}$. Assume N is independent from $\left(X_{n}\right)_{n \geq 1}$.

Let $P=\sum_{i=1}^{N} X_{i}, F=N-P$.
a) What is the joint distribution of (P, N) ?
b) Prove that P and F are independent.

Exercise 4. The number of buses stopping till time t. Let $\left(X_{n}\right)_{n \geq 1}$ be i.i.d, random variables on $(\Omega, \mathcal{A}, \mathbb{P}), X_{1}$ being an exponential random variable with parameter 1. Define $T_{0}=0, T_{n}=X_{1}+\cdots+X_{n}$, and for any $t>0$,

$$
N_{t}=\max \left\{n \geq 0 \mid T_{n} \leq t\right\}
$$

a) For any $n \geq 1$, calculate the joint distribution of $\left(T_{1}, \ldots, T_{n}\right)$.
b) Deduce the distribution of N_{t}, for arbitrary t.

Exercise 5. Let $\left(X_{n}\right)_{n \geq 0}$ be real, independent, random variables on $(\Omega, \mathcal{A}, \mathbb{P})$.
a) Prove that the radius of convergence R of the random series $\sum_{n \geq 0} X_{n} z^{n}$ is almost surely constant.
b) Assume also that the X_{n} 's have the same distribution. Prove that $R=0$ a.s. if $\mathbb{E}\left[\log \left(\left|X_{0}\right|\right)_{+}\right]=\infty$, and $R \geq 1$ a.s. if $\mathbb{E}\left[\log \left(\left|X_{0}\right|\right)_{+}\right]<\infty$.

Exercise 6. Prove that there is no probability measure on \mathbb{N} such that for any $n \geq 1$, the probability of the set of multiples of n is $1 / n$.

Exercise 7. Let X and Y be random variables on $(\Omega, \mathcal{F}, \mathbb{P})$, and \mathcal{G}, \mathcal{H} sub σ-fields of \mathcal{F} such that $\sigma(\mathcal{G}, \mathcal{H})=\mathcal{F}$. Find counterexamples to the following assertions:
(i) If $\mathbb{E}[X \mid Y]=\mathbb{E}[X]$ then X and Y are independent.
(ii) If $\mathbb{E}[X \mid \mathcal{G}]=\mathbb{E}[X \mid \mathcal{H}]=0$ then $X=0$.
(iii) If X and Y are independent then so are $\mathbb{E}[X \mid \mathcal{G}]$ and $\mathbb{E}[Y \mid \mathcal{G}]$.

Exercise 8. Let Y be an integrable random variable on $(\Omega, \mathcal{A}, \mathbb{P})$ and \mathcal{G} a sub σ-field of \mathcal{A}. Show that $|\mathbb{E}(Y \mid \mathcal{G})| \leq \mathbb{E}(|Y| \mid \mathcal{G})$ (almost surely).

Exercise 9. Let Y be an integrable random variable on $(\Omega, \mathcal{A}, \mathbb{P})$ and \mathcal{G} a sub σ field of \mathcal{A}. Suppose that $\mathcal{H} \subset \mathcal{G}$ is a sub σ-field of \mathcal{G}. Show that $\mathbb{E}(\mathbb{E}(Y \mid \mathcal{G}) \mid \mathcal{H})=$ $\mathbb{E}(Y \mid \mathcal{H})$ (almost surely).

Exercise 10. Let $\left(X_{n}\right)_{n \geq 0}$ be defined on $(\Omega, \mathcal{A}, \mathbb{P})$. Assume this sequence converges in probability (under \mathbb{P}) to X. Let \mathbb{Q} be another probability measure on (Ω, \mathcal{A}) assumed to be absolutely continuous w.r.t. \mathbb{P}. Prove that $X_{n} \rightarrow X$ in probability under \mathbb{Q}.

