Exercise 1. Let X and Y be independent Gaussian random variables with null expectation and variance 1. Show that $\frac{X+Y}{\sqrt{2}}$ and $\frac{X-Y}{\sqrt{2}}$ are also independent $\mathcal{N}(0,1)$.

Exercise 2. Let $(X_n)_{n>0}$ be a sequence of i.i.d random variables, with uniform distribution on [0,1]. Let $Y_n = (X_n)^n$.

- (1) Calculate the distribution of Y_n .
- (2) Show that $(Y_n)_{n\geq 0}$ converges to 0 in probability.
- (3) Show that $(Y_n)_{n>0}$ converges in L^1 .
- (4) Show that almost surely $(Y_n)_{n\geq 0}$ does not converge.

Exercise 3. Let $(X_n)_{n\geq 1}$ be i.i.d. Bernoulli random variables with parameter $p \in (0, 1)$, i.e. $\mathbb{P}(X_i = 1) = 1 - \mathbb{P}(X_i = 0) = p$. Let N be a Poisson random variable with parameter $\lambda > 0$, i.e. for any $k \ge 0$ we have $\mathbb{P}(N = k) = e^{-\lambda} \frac{\lambda^k}{k!}$. Assume N is independent from $(X_n)_{n\geq 1}$. Let $P = \sum_{i=1}^{N} X_i, F = N - P$.

- a) What is the joint distribution of (P, N)?
- b) Prove that P and F are independent.

Exercise 4. The number of buses stopping till time t. Let $(X_n)_{n\geq 1}$ be i.i.d, random variables on $(\Omega, \mathcal{A}, \mathbb{P}), X_1$ being an exponential random variable with parameter 1. Define $T_0 = 0$, $T_n = X_1 + \cdots + X_n$, and for any t > 0,

$$N_t = \max\{n \ge 0 \mid T_n \le t\}$$

- a) For any $n \ge 1$, calculate the joint distribution of (T_1, \ldots, T_n) .
- b) Deduce the distribution of N_t , for arbitrary t.

Exercise 5. Let $(X_n)_{n>0}$ be real, independent, random variables on $(\Omega, \mathcal{A}, \mathbb{P})$.

a) Prove that the radius of convergence R of the random series $\sum_{n>0} X_n z^n$ is almost surely constant.

b) Assume also that the X_n 's have the same distribution. Prove that R = 0 a.s. if $\mathbb{E}[\log(|X_0|)_+] = \infty$, and $R \ge 1$ a.s. if $\mathbb{E}[\log(|X_0|)_+] < \infty$.

Exercise 6. Prove that there is no probability measure on \mathbb{N} such that for any n > 1, the probability of the set of multiples of n is 1/n.

Exercise 7. Let X and Y be random variables on $(\Omega, \mathcal{F}, \mathbb{P})$, and \mathcal{G}, \mathcal{H} sub σ -fields of \mathcal{F} such that $\sigma(\mathcal{G}, \mathcal{H}) = \mathcal{F}$. Find counterexamples to the following assertions:

- (i) If $\mathbb{E}[X \mid Y] = \mathbb{E}[X]$ then X and Y are independent.
- (ii) If $\mathbb{E}[X \mid \mathcal{G}] = \mathbb{E}[X \mid \mathcal{H}] = 0$ then X = 0.
- (iii) If X and Y are independent then so are $\mathbb{E}[X \mid \mathcal{G}]$ and $\mathbb{E}[Y \mid \mathcal{G}]$.

Exercise 8. Let Y be an integrable random variable on $(\Omega, \mathcal{A}, \mathbb{P})$ and \mathcal{G} a sub σ -field of \mathcal{A} . Show that $|\mathbb{E}(Y \mid \mathcal{G})| \leq \mathbb{E}(|Y| \mid \mathcal{G})$ (almost surely).

Exercise 9. Let Y be an integrable random variable on $(\Omega, \mathcal{A}, \mathbb{P})$ and \mathcal{G} a sub σ field of \mathcal{A} . Suppose that $\mathcal{H} \subset \mathcal{G}$ is a sub σ -field of \mathcal{G} . Show that $\mathbb{E}(\mathbb{E}(Y \mid \mathcal{G}) \mid \mathcal{H}) =$ $\mathbb{E}(Y \mid \mathcal{H})$ (almost surely).

Exercise 10. Let $(X_n)_{n\geq 0}$ be defined on $(\Omega, \mathcal{A}, \mathbb{P})$. Assume this sequence converges in probability (under \mathbb{P}) to X. Let \mathbb{Q} be another probability measure on (Ω, \mathcal{A}) assumed to be absolutely continuous w.r.t. \mathbb{P} . Prove that $X_n \to X$ in probability under \mathbb{Q} .