Probability, homework 8, due November 15.

Exercise 1. Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, and $\left(A_{n}\right)_{n \geq 1}$ be a sequence of independent events. We denote $a_{n}=\mathbb{P}\left(A_{n}\right)$ and define $b_{n}=a_{1}+\cdots+a_{n}$, $S_{n}=\mathbb{1}_{A_{1}}+\cdots+\mathbb{1}_{A_{n}}$. Assuming $b_{n} \rightarrow \infty$ as $n \rightarrow \infty$, prove that S_{n} / b_{n} converges almost surely.

Exercise 2. Let X_{1}, \ldots, X_{n} be i.i.d. integrable random variables, and $S=$ $\sum_{i=1}^{n} X_{i}$. Calculate $\mathbb{E}\left[S \mid X_{1}\right]$ and $\mathbb{E}\left[X_{1} \mid S\right]$.

Exercise 3. For fixed $a, b>0$, let (X, Y) be a $\mathbb{N} \times \mathbb{R}_{+}$-valued random variable such that

$$
\mathbb{P}(X=n, Y \leq t)=b \int_{0}^{t} \frac{(a y)^{n}}{n!} e^{-(a+b) y} \mathrm{~d} y .
$$

For $h: \mathbb{R}_{+} \rightarrow \mathbb{R}$ continuous and bounded, calculate $\mathbb{E}[h(Y) \mid X]$. Calculate $\mathbb{E}\left[\frac{Y}{X+1}\right]$. Calculate $\mathbb{P}(X=n \mid Y)$. Calculate $\mathbb{E}[X \mid Y]$.
Exercise 4. Let (X_{1}, X_{2}) be a Gaussian vector with mean (m_{1}, m_{2}) and nondegenerate covariance matrix $\left(C_{i j}\right)_{1 \leq i, j \leq 2}$. Prove that

$$
\mathbb{E}\left[X_{1} \mid X_{2}\right]=m_{1}+\frac{C_{12}}{C_{22}}\left(X_{2}-m_{2}\right) .
$$

Exercise 5. Let X be a random variable such that $\mathbb{P}(X>t)=\exp (-t)$ for any $t \geq 0$. Let $Y=\min (X, s)$, where $s>0$ is fixed. Prove that, almost surely,

$$
\mathbb{E}[X \mid Y]=Y \mathbb{1}_{Y<s}+(1+s) \mathbb{1}_{Y=s} .
$$

Exercise 6. Let $\left(X_{n}\right)_{n \geq 1}$ be a sequence of nonnegative random variables on $(\Omega, \mathcal{A}, \mathbb{P})$, and $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ a sequence of sub σ-fields of \mathcal{F}. Assume that $\mathbb{E}\left(X_{n} \mid \mathcal{F}_{n}\right)$ converges to 0 in probability.
(i) Show that X_{n} converges to 0 in probability.
(ii) Show that the reciprocal is wrong.

Exercise 7. Let μ and ν be two probability measures such that $\mu \ll \nu$ and $\nu \ll \mu$ (usually abbreviated $\mu \sim \nu$). Let $X=\frac{\mathrm{d} \mu}{\mathrm{d} \nu}$.
(i) Prove that $\nu(X=0)=0$.
(ii) Prove that $\frac{1}{X}=\frac{\mathrm{d} \nu}{\mathrm{d} \mu}$ almost surely (for μ or ν).

Exercise 8. Let $X_{1}, X_{2} \ldots$ be i.i.d. Bernoulli random variables $\left(\mathbb{P}\left(X_{1}=1\right)=\right.$ $\left.\mathbb{P}\left(X_{1}=-1\right)=1 / 2\right)$ and $S_{n}=\sum_{i=1}^{n} X_{i}$. Which of the following sequences are Markovian? If Markovian, give the transition matrix.
(i) $\left(S_{n}^{2}-n\right)_{n \geq 0}$.
(ii) $\left(S_{2 n}\right)_{n \geq 0}$.
(iii) $\left(\left|S_{n}\right|\right)_{n \geq 0}$.

Exercise 9. Consider a Markov chain X with state space $\{0,1, \ldots, n\}$ and transition matrix

$$
\begin{aligned}
\pi(0, k) & =\frac{1}{2^{k+1}}, 0 \leq k \leq n-1, \pi(0, n)=\frac{1}{2^{n}} \\
\pi(k, k-1) & =1,1 \leq k \leq n-1, \pi(n, n)=\pi(n, n-1)=\frac{1}{2} .
\end{aligned}
$$

(i) Prove that the chain has a unique invariant probability measure μ and calculate it.
(ii) Prove that for any $0 \leq x_{0} \leq n-1, \pi^{\left(x_{0}+1\right)}\left(x_{0}, \cdot\right)=\mu$.
(iii) Prove that for any $0 \leq x_{0} \leq n, \pi^{(n)}\left(x_{0}, \cdot\right)=\mu$.
(iv) For any $t \geq 1$, calculate

$$
d(t):=\frac{1}{2} \sum_{x=0}^{n}\left|\pi^{(t)}(n, x)-\mu(x)\right|,
$$

and plot $t \mapsto d(t)$.
Exercise 10. On the same probability space, let X, Y be positive random variables such that $\mathbb{E}[X \mid Y]=Y$ and $\mathbb{E}[Y \mid X]=X$ (almost surely). Prove that $X=Y$ almost surely.

