Probability, homework 8, due November 22.

Exercise 1. For fixed $p, q \in[0,1]$, consider a Markov chain X with two states $\{1,2\}$, with transition matrix

$$
\pi=(\pi(i, j))_{1 \leq i, j \leq 2}=\left(\begin{array}{cc}
1-p & p \\
q & 1-q
\end{array}\right)
$$

(i) For which p, q is the chain irreducible? Aperiodic (see Lemma 4.14 and Remark 4.10 in Varadhan)?
(ii) What are the invariant probability measures of X ?
(iii) Compute $\pi^{(n)}, n \geq 1$.
(iv) When X is irreducible, for this invariant probability measure μ, calculate

$$
\begin{aligned}
d_{1}(n) & :=\frac{1}{2}\left(\left|\mathbb{P}_{1}\left(X_{n}=1\right)-\mu(1)\right|+\left|\mathbb{P}_{1}\left(X_{n}=2\right)-\mu(2)\right|\right) \\
d_{2}(n) & :=\frac{1}{2}\left(\left|\mathbb{P}_{2}\left(X_{n}=1\right)-\mu(1)\right|+\left|\mathbb{P}_{2}\left(X_{n}=2\right)-\mu(2)\right|\right)
\end{aligned}
$$

where \mathbb{P}_{x} means the chain starts at x.
Exercise 2. Let T be a stopping time for a filtration $\left(\mathcal{F}_{n}\right)_{n \geq 1}$. Prove that \mathcal{F}_{T} is a σ-field.

Exercise 3. Let S and T be stopping times for a filtration $\left(\mathcal{F}_{n}\right)_{n \geq 1}$. Prove that $\max (S, T)$ and $\min (S, T)$ are stopping times.

Exercise 4. Let $S \leq T$ be two stopping times and $A \in \mathscr{F}_{S}$. Define $U(\omega)=S(\omega)$ if $\omega \in A, U(\omega)=T(\omega)$ if $\omega \notin A$. Prove that U is a stopping time.

Exercise 5. An ant walks on a round clock, starting at 0, up to the moment it has visited all numbers. At each second, it walks either clockwise or counterclockwise, with probability $1 / 2$ to a neighbouring number, and through independent steps. Let X be the final position of the ant. Prove it is equidistributed on $\{1,2, \ldots, 11\}$.

Exercise 6. Let X_{1}, X_{2}, \ldots be i.i.d., $\mathbb{P}\left(X_{1}=1\right)=\mathbb{P}\left(X_{1}=-1\right)=1 / 2$, and $S_{n}=$ $X_{1}+\cdots+X_{n}$. Prove that the following random variable converges in distribution as $n \rightarrow \infty$, and identify the limit:

$$
\left(\sum_{k=1}^{n} e^{S_{k}}\right)^{\frac{1}{\sqrt{n}}}
$$

