Exercise 1. Let \mathcal{A} be a σ-algebra, \mathbb{P} a probability measure and $(A_n)_{n \geq 1}$ a sequence of events in \mathcal{A} which converges to A. Prove that

(i) $A \in \mathcal{A}$;
(ii) $\lim_{n \to \infty} \mathbb{P}(A_n) = \mathbb{P}(A)$.

Solution. As a first step, note that $A_n \to A$ can be rephrased as

$$A = \limsup_{n \to \infty} A_n = \liminf_{n \to \infty} A_n,$$

where we remind that $\limsup A_n = \cap_{n \geq 1} \cup_{m \geq n} A_m$ and $\liminf A_n = \cup_{n \geq 1} \cap_{m \geq n} A_m$. In particular this implies that $A \in \mathcal{A}$.

We therefore known that $(B_n)_n := (\cup_{m \geq n} A_m)_n$ decreases to A and $(C_n)_n := (\cap_{m \geq n} A_m)_n$ increases to A, so $\mathbb{P}(B_n) \to \mathbb{P}(A)$ and $\mathbb{P}(C_n) \to \mathbb{P}(A)$. As $B_n \subset A_n \subset C_n$, this implies $\mathbb{P}(A_n) \to \mathbb{P}(A)$.

Exercise 2. Suppose a distribution function F is given by

$$F(x) = \frac{1}{4} \mathbb{I}_{[0, \infty)}(x) + \frac{1}{2} \mathbb{I}_{[1, \infty)}(x) + \frac{1}{4} \mathbb{I}_{[2, \infty)}(x).$$

What is the probability of the following events, $(-1/2, 1/2), (-1/2, 3/2), (2/3, 5/2), (3, \infty)$?

Solution We have

$$\mathbb{P}((-1/2, 1/2)) = F(1/2) - F(-1/2) = 1/4 - 0 = 1/4,$$
$$\mathbb{P}((-1/2, 3/2)) = F(3/2) - F(-1/2) = 3/4 - 0 = 3/4,$$
$$\mathbb{P}((2/3, 5/2)) = F(5/2) - F(2/3) = 1 - 1/4 = 3/4,$$
$$\mathbb{P}((3, \infty)) = F(\infty) - F(3) = 1 - 1 = 0.$$

Exercise 3. Let μ be the Lebesgue measure on \mathbb{R}. Build a sequence of functions $(f_n)_{n \geq 0}$, $0 \leq f_n \leq 1$, such that $\int f_n \, d\mu \to 0$ but for any $x \in \mathbb{R}$, $(f_n(x))_{n \geq 0}$ does not converge.

Solution Define $f_n(x) = \mathbb{I}_{x \in [f(n), g(n)]}$ where, for $n \in [2^p, 2^{p+1})$, $f(n) = (n - 2^p - 2^{p-1})/p$, $g(n) = f(n) + 1/p$. Clearly $\int f_n = 1/p \to 0$ and for any x we have $f_n(x) = 1$, and 0 i.o.

Exercise 4. Let X be a random variable in $L^1(\Omega, \mathcal{A}, \mathbb{P})$. Let $(A_n)_{n \geq 0}$ be a sequence of events in \mathcal{A} such that $\mathbb{P}(A_n) \to 0$. Prove that $\mathbb{E}(X \mathbb{1}_{A_n}) \to 0$.

Solution For any $C > 0$ we have

$$|\mathbb{E}(X \mathbb{1}_{A_n})| \leq \mathbb{E}(|X| \mathbb{1}_{|X| > C}) + C \mathbb{P}(A_n).$$

Let $\varepsilon > 0$. By monotone convergence, there exists $C > 0$ such that $\mathbb{E}(|X| \mathbb{1}_{|X| > C}) < \varepsilon$. For this C, there exists a n_0 such that for any $n > n_0$ we have $\mathbb{P}(A_n) < \varepsilon/C$. Thus we have proved that for $n > n_0$, $|\mathbb{E}(X \mathbb{1}_{A_n})| < 2\varepsilon$, which concludes the proof.

Exercise 5. Let $(d_n)_{n \geq 0}$ be a sequence in $(0,1)$, and $K_0 = [0,1]$. We define iteratively $(K_n)_{n \geq 0}$ in the following way. From K_n, which is the union of closed disjoint intervals, we define K_{n+1} by removing from each interval of K_n an open interval, centered at the middle of the previous one, with length d_n times the length of the previous one. Let $K = \cap_{n \geq 0} K_n$ (K is called a Cantor set).
(a) Prove that \(K \) is an uncountable compact set, with empty interior, and whose points are all accumulation points.
(b) What is the Lebesgue measure of \(K \)?

Solution. (i) Each \(K_n \) being closed, so is \(K \). Moreover \(K \subseteq [0, 1] \), so it is compact.

To prove that \(K \) is uncountable, consider the following bijection \(\varphi : K \to \{0, 1\}^\mathbb{N} \):
if \(x \in K \), then \(x \) is either in the left or right interval from \(K_1 \), and define \(\varphi(x)_0 = 0 \) if \(x \) is in the left interval, 1 otherwise. Iterations on \(K_2 \), etc defines \(\varphi(x) \), and \(\varphi \) is easily shown to be a bijection.

To prove that \(K \) has empty interior, assume \(x, y \in I \) for some interval \(I \subset K \). Then for any \(n \) we have \(x, y \) in the same interval from \(K_n \), i.e. \(\varphi(x)_n = \varphi(y)_n \). As \(\varphi \) is a bijection this imposes \(x = y \), so I needs to be a point, i.e. \(K \) has empty interior.

Finally, for any \(x \in K \), the set \(\{ y \in K : \forall k \leq n, \varphi(y)_k = \varphi(x)_k \} \) is infinite and its points are at distance at most \(2^{-(n+1)} \) from \(x \), so \(x \) is an accumulation point.

(ii) An easy induction shows that the Lebesgue measure of \(K_n \) is \((1 - d_0) \ldots (1 - d_{n-1}) \). So
\[
\text{Leb}(K) = \lim_{n \to \infty} (1 - d_0) \ldots (1 - d_{n-1}).
\]
This is 0 if the series of \(d_n \)'s diverges, a number in \((0, 1) \) otherwise (for this analysis, take the logarithm and Taylor-expand).

Exercise 6. Let \(X \) be a nonnegative random variable. Prove that \(E(X) < +\infty \) if and only if \(\sum_{n \in \mathbb{N}} P(X \geq n) < \infty \).

Solution. By monotone convergence we have \(E(X) = \sum_{n \geq 0} P(X \in [n, n+1)) \), so that
\[
-1 + \sum_{n \geq 0} (n+1)P(X \in [n, n+1)) = \sum_{n \geq 0} nP(X \in [n, n+1)) \leq E(X) \leq \sum_{n \geq 0} (n+1)P(X \in [n, n+1)).
\]
The result follows by noting that \(\sum_{n \geq 0} (n+1)P(X \in [n, n+1)) = \sum_{n \in \mathbb{N}} P(X \geq n) \).

Exercise 7. Convergence in measure. Let \((\Omega, \mathcal{A}, \mu) \) be a probability space, and \((f_n)_{n \geq 1}, f : \Omega \to \mathbb{R} \) measurable (for the Borel \(\sigma \)-field on \(\mathbb{R} \)). We say that \((f_n)_{n \geq 1} \) converges in measure to \(f \) if for any \(\varepsilon > 0 \) we have
\[
\mu(|f_n - f| > \varepsilon) \xrightarrow{n \to \infty} 0.
\]

(i) Show that \(\int |f - f_n| \, d\mu \to 0 \) implies that \(f_n \) converges to \(f \) in measure. Is the reciprocal true?
(ii) Show that if \(f_n \to f \ \mu\)-almost surely, then \(f_n \to f \) in measure. Is the reciprocal true?
(iii) Show that if \(f_n \to f \) in measure, there exists a subsequence of \((f_n)_{n \geq 1} \) which converges \(\mu \)-almost surely.
(iv) (A stronger dominated convergence theorem) We assume that \(f_n \to f \) in measure and \(|f_n| \leq g \) for some integrable \(g : \Omega \to \mathbb{R} \), for any \(n \geq 1 \).
(a) Show that \(|f| \leq g \ \mu\)-a.s.
(b) Deduce that \(\int |f_n - f| \, d\mu \to 0 \).

Solution.
We first prove that
\[f : \Omega \to \mathbb{R}, \quad \text{such that} \quad f_n \to f - a.s., \] so that
\[f_n \text{ is included in the above set, this concludes the proof.} \]

(i) For any \(\varepsilon > 0 \) we have \(1_{|f-f_n|>\varepsilon} \leq \frac{|f-f_n|}{\varepsilon} \), so that
\[
\mu(|f-f_n| > \varepsilon) \leq \frac{1}{\varepsilon} \int_{\Omega} |f_n - f| \, d\mu \to 0.
\]

The reciprocal is wrong, as shown by the example \((f_n)_{n \geq 1} \) defined on \(([0,1], \mathcal{B}, \text{Leb}) \) by \(f_n = n1_{[0,1/n]} \).

(ii) For any \(\varepsilon > 0 \) we have
\[\cap_{n \geq 1} \cup_{m \geq n} \{|f_n - f| > \varepsilon\} \subset \{f_n \to f\} \]
so that \(\mu(\cap_{n \geq 1} \cup_{m \geq n} \{|f_m - f| > \varepsilon\}) = 0 \). The sequence \((\cup_{m \geq n} \{|f_m - f| > \varepsilon\})_{n \geq 1} \)
decreases, so this implies that
\[\lim_{n \to \infty} \mu(\cup_{m \geq n} \{|f_m - f| > \varepsilon\}) = 0, \]
and in particular \(\lim_{n \to \infty} \mu(\{|f_n - f| > \varepsilon\}) = 0 \).

The reciprocal is wrong, as shown by the example \((f_{n,k})_{n \geq 1, 1 \leq k \leq n} \) defined on \(([0,1], \mathcal{B}, \text{Leb}) \) by \(f_{n,k} = 1_{(k-1)/n,k/n]} \).

(iii) From the hypothesis, for any \(k \geq 1 \) there exists an index \(n_k \) such that
\[\mu(|f_{n_k} - f| > 1/k) \leq 2^{-k}. \] Summability in \(k \) easily implies
\[\mu(\cap_{m \geq 1} \cup_{k \geq m} \{|f_{n_k} - f| > 1/k\}) = 0. \]

As \(f_{n_k} \to f \) is included in the above set, this concludes the proof.

(iv) (a) For any \(\varepsilon > 0 \) we have
\[\mu(|f| > g + \varepsilon) \leq \mu(|f| > |f_n| + \varepsilon) + \mu(|f - f_n| > \varepsilon) \]
so that \(\mu(|f| > g + \varepsilon) = 0 \). Therefore \(\mu \)-a.s. for any \(n \geq 1 \) we have \(|f| \leq g + 1/n \), so \(|f| \leq g \).

(b) We have
\[\int_{\Omega} |f_n - f| \, d\mu = \int_{|f_n - f|<\varepsilon} |f_n - f| \, d\mu + \int_{|f_n - f|\geq\varepsilon} |f_n - f| \, d\mu \leq \varepsilon + 2 \int_{|f_n - f|\geq\varepsilon} |g| \, d\mu. \]

As \(g \) is integrable, \(\int_{|f_n - f|\geq\varepsilon} |g| \, d\mu \to 0 \) as \(n \to \infty \) (e.g. by dominated convergence or uniform continuity of the integral), and the conclusion follows as \(\varepsilon \) is arbitrary.

Exercise 8. Consider a probability space \((\Omega, \mathcal{A}, \mu) \) and \((A_n)_{n} \) a sequence in \(\mathcal{A} \). Let \(f : \Omega \to \mathbb{R} \) be measurable (for the Borel \(\sigma \)-field on \(\mathbb{R} \)) such that \(\int_{\Omega} |1_{A_n} - f| \, d\mu \to 0 \) as \(n \to \infty \). Prove that there exists \(A \in \mathcal{A} \) such that \(f = 1_A \mu \)-a.s., i.e. \(\mu(f = 1_A) = 1 \).

Solution. We first prove that \(|f| < 2 \mu \)-a.s.: \(\{|f| > 2\} \subset \{|f - 1_{A_n}| > 1\} \), so that
\[\mu(|f| > 2) \leq \mu(|f - 1_{A_n}| > 1) \leq \int_{\Omega} |1_{A_n} - f| \, d\mu \to 0, \]
where for the second inequality we used \(\mu(X > 1) \leq \mathbb{E}(X) \) for any positive random variable. This proves \(|f| < 2 \mu \)-a.s.
We now prove that $f = f^2$ μ-a.s., so that the expected result follows from the choice $A = \{f = 1\}$. We have

$$\int_{\Omega} |f - f^2| d\mu \leq \int_{\Omega} |f - 1_{A_n}| d\mu + \int_{\Omega} |f^2 - 1_{A_n}| d\mu$$

$$= \int_{\Omega} |f - 1_{A_n}| d\mu + \int_{\Omega} |f - 1_{A_n}| \cdot |f + 1_{A_n}| d\mu \leq 4 \int_{\Omega} 1_{A_n} - f| d\mu \to 0.$$

where we used that μ-a.s. $|f + 1_{A_n}| \leq |f| + 1 \leq 3$. This concludes the proof.

Exercise 9. Consider a probability space (E, A, μ) and $f_n : E \to \mathbb{R}$ measurable, $n \geq 1$. Assume $f_n \to f$ μ-almost surely. Prove that for any $\varepsilon > 0$ there exists a set $A \in A$ such that $\mu(A) < \varepsilon$ and the convergence $f_n \to f$ is uniform on A^c.

Solution. Let

$$E_{k,n} = \cap_{j \geq n} \{|f_j - f| \leq 2^{-k}\}.$$

As $f_j \to f$ a.s., $(E_{k,n})_{n \geq 1}$ is an increasing sequence converging to $E - N$ for some measurable N with $\mu(N) = 0$. For any k let n_k be such that $\mu(E_{k,n_k}) \geq 1 - \frac{\varepsilon}{2^k}$, and let

$$A = N \cup \bigcup_{k \geq 1} (E - E_{k,n_k}).$$

Then $\mu(A) \leq \varepsilon$ and f_n converges to f uniformly on A^c: for any $\omega \in A^c$ we have $x \in E_{k,n_k}$ so that $|f_n(x) - f(x)| \leq 2^{-k}$ for all $n \geq n_k$.
