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Main ensembles

e Poisson ensemble of diagonal matrices
Mij = pjéij with Pj — i.i.d. random variables
e Standard Random Matrix Ensembles

M = M;; = real symmetric, complex Hermitian,
or quaternion matrices

—aTr MMT

Measure: e 1s invariant over conjugation

M—UMU?

of a group of orthogonal, unitary, or symplectic matrices.

Joint distribution of eigenvalues
P()\) ~ H A — )\j\ﬁe_ > V(A
i<k

B =1, 2,4 for GOE, GUE, and GSE



Well accepted conjectures
e Berry, Tabor (1997):

Integrable systems —> Poisson statistics

p(s)=exp(-s)
(A+E)W=0

p(s)

e Bohigas, Giannoni, Schmit (1984):

Chaotic systems =—- Random Matrix Statistics

p(s)=v2 s exp(+t 52/4)

p(s)




3d Anderson model

H = Zsia,zai — Z a,j.az-
i

j=adjacent to %

g;=i.i.d.r.v. between —W/2 and W/2. W, =16 £0.5

¢ When W < W, states are delocalized (metal) and spectral
statistics = RMT

e When W > W, states are localized (insulator) and spectral

statistics = Poisson

¢ When W = W, (metal-insulator transition) states have
fractal properties and a new intermediate type of spectral
statistics has been observed numerically Shklovskii (1993)



Characteristic features of intermediate statistics

e Level repulsion at small distances as for RMT

p(s) = 0 when s — 0

e Exponential decrease of p(s) at large distances
as for Poisson

p(s) ~e % when s — oo
e Linear asymptotics of the number variance
¥*(L) = ((n(L) = a(L))*) — xL when L — oo
X = spectral compressibility. x = 1 for Poisson, x = 0 for RMT

e Multi-fractal character of eigenfunctions
(|[W|?4) — L=@=YDa when L — oo

D, = 0 for Poisson, D, =1 for RMT



Random matrix models of intermediate statistics

g
i —jl°

M;; = €j57;j + V(Z — ]) , typically V(Z — ]) ~
e; = i.id.r.v. between —W /2 and W/2.
States ¢ and j are in resonances provided
ej —el < |V(i—J)

Number of resonances connected with a cite 2

Nresonances(i) ~ Z |V(Z — J)‘
J

If
e o > 1 —> localization
e o <1 =— delocalization

e o = 1 —> intermediate statistics



Critical band random matrix ensemble

N x N random matrices (e.g. Evers, Mirlin (2008)):
H;; are i.i.d. Gaussian variables (real for # =1 and complex for

B = 2) with zero mean (H;;) = 0 and with variance

(|Hij|*) = (1 + C ;2‘7)2)1

Perturbation series

e b>1: D, =1- 27?66’ X_—27r5b

o b 1:
For 3 =1




Short-range Dyson gas model

Standard RMT

P(>\17>\277AN) ~ €XDP ﬂzlnl)\J _>\7J‘ _ZV(AJ)
J

1<J

B =1,2,4 for GOE, GUE, and GSE

Short-range gas model: \{ < Ay < ... < An

P(A1, Ao, .. An) ~exp [ B In|hjn — A=) V(X
J J

Similar for finite number of nearest levels

All correlation functions are calculated analytically

)




Semi-Poisson statistics

n nearest-neighbor spacing distribution

P(n,s) ~ gAtn(B+1),—(6+1)s

2-point correlation formfactor

N —1
(1+575) _1]

K(r) =

Level compressibility



Polygonal billiards

N i — 1
=1+ 530"

T
N = the least common multiple of n;

Large variety of different behaviors



T

5

right triangle

Semi-Poisson formulas:

Nyp(s) =1—(2s+1)e 2?5, Ry(s) =1 —e™ %5



Analytical calculation of level compressibility

E.B., Giraud, Schmit (2001)

e(n) =

\

( 0O when n is odd

2 when n is even but not divisible by 3

| 6 when n is divisible by 6

Calculations are based on the existence of the Veech group



Rectangular billiard with a flux line

Aharonov-Bohm flux line Aharonov-Bohm flux line

\ Ay = = at point g, yo

U, (r,¢) = 0 on a rectangle a, b

2 o 1/0  \°
[W + ror + 72 (ﬁqb a 1oz) T En | Walr,¢) =0

a = fractional part of the flux

x=K(0)=1-4a(1 — &) + 6an

n = explicit function of e; = zg/a and es = yo/b

For irrational ey, es, n = 1/6 and

x = K(0) =1 — 3a + 4a°



Classical mechanics of pseudo-integrable billiards

a
g

1 2 3 4

Interval-exchange map: [, 15, I3, 14, — 14,135, 15, 14



The simplest interval exchange map: (I, 1) — (1o, I1)

Consider a sequence of parabolic 2-dim maps

by b —> b mod 1
x z + f(p)
Pa - (p)|_><p—|—oz> mod 1



Rational o = m/q

p =p+k/q and ®¢ = “pseudo-integrable” map

q
GRS P b mod 1, C:Zf(p—l—ja)
x x4+ C =1

Simplest interval-exchange map of two intervals :

1

X+—— X+ C mod 1




Quantization of map

~ a unitary matrix whose saddle points = classical map
<Q|( o)|@) =
LS explzrit-Ne() 4 £ g - )+ 2miac)
— - — — — — 1)
N £ TP N TN "

=0
®(k) = f(p) - Giraud, Marklof, O’Keefe (2004) for ®(p) = p*
Momentum representation

Unitary N x N matrix :

1 — e27riaN

N[]_ _ eZWi(k—p—i—aN)/N] )

My, = e'®x

&, = —N®(k/N), k,p=0,1,...,N—1



\ o

1 — eQﬂ'iaN
Hkp = N(l _ e27ri(k—p—|—ozN)/N)

Two cases

e Non - symmetric (analog of GUE):
d, are i.i.d. random variables with uniform distribution
between 0 and 27.

e With ’time-reversal’ symmetry (analog of GOE):

Only a half of coefficients is independent. The other are
obtained from the symmetry : ®n_x = Py.



Main results: E.B., Schmit (2004)

For « = m/q and mN = +1 mod q spectral statistics of the main

matrix = the semi-Poisson statistics with parameter

qg—1 for non-symmetric matrices

1

§(q — 2) for symmetric matrices

0=

The nearest-neighbor distribution:
p(s) = ABSBG—(BH)S
Dyson’s dogma:

In random matrices one gets level repulsion (p(s) ~ s”) with only

three values of (3
B=1.2, 4.

In pseudo-integrable maps it is not correct.



Non-symmetric matrices

15

p(s)

05 +

The nearest-neighbor distribution for
a=1/3,1/6,1/9.

Solid line: v = 1/3
p(s) ~ 52 =33
Dotted line: @ = 1/6
p(s) ~ 55 =69
Dashed line: o = 1/9
p(s) ~ 58 =9



Non-symmetric matrices

For integer j3:

Ry(s)

Réﬁ)(s) _ e—(,@—i—l.)s Zi:o
exp[(B + 1)se i/ (FH1) 4
e2mk/(5+1)]

The two-point correlation function
for o = 1/4,1/7,1/10.



Symmetric matrices

e v =1/2:
p(s) =e™*
o v=1/3:
p(S) ~ 81/2 e—3/23
e 0 =1/5:
p(S) ~ 83/2 e—5/2s
o o= 1/T7:
p(s) ~ g2/2p—7/2s

p(s)

The nearest-neighbor distribution for

symmetric matrices with

a=1/2,1/3,1/51/7.



Spectral statistics when N # 1 mod ¢

For « =m/qand N = —k mod ¢ with Kk =1,...,q¢ — 1 correlation
functions are calculated from a transfer matrix of dimension

C¥~, (E.B., Dubertand, Schmit (2008))

Example: For non-symmetric matrices with o = 1/5 and
N = £+2 mod 5 the transfer matrix is

4

ot
(@)}

37 S5 Oa
$3 iC4 $5
T(x) =] 3% 5% 5% |exp(—bz).
2 3 4
251 3% 3%

p(s) = (ags? + azs® + ags? + azs® + ags®)e™>%
az = 625/2 — 275y/5/2 = 5.041, a3 = 3125/2 — 1375+/5/2 ~ 25.203,
ay = T1875/48 + 33125+/5/48 ~ 45.724,

as = —15625/3 + 9375v/5/4 ~ 32.451,

ag = 1015625/288 — 453125+/5/288 ~ 8.357.




Transfer matrix for o« =1/7 and N = 4+3 mod 7

For non-symmetric matrices: p, ~ x"e™

x

For symmetric matrices: p, ~ z("~1/2e=2/2

[ 10ps
10p5

6p4

39p7
39D6
20ps
8P4
15ps
12p4
6ps
3p3

70ps
70p7
40ps¢
15ps
30pe
29ps
12p4
8P4

84pg
84ps
49p7
19ps
39p7
30ps
15ps
10ps

56ps
56p7
30ps¢
10ps
26pe
20ps
8P4
6p4

168p9
168p8

91p~
30ps
Tp7
61pe
25ps
20ps
12p4
3p3

252p10
252pg
140ps
49p7
112psg
91p~
40pe
30pe
20ps
O6p4

210p10
210p9
112ps

30p7
98ps
p7
30pe
26pe
15ps
4Py

462p11
462p10
252po
84ps
210pg
168ps
70p7
56p7
39p6
10ps

462p12
462p11
252p10
84pg
210p10
168pg
70ps
56ps
39p7
10ps




Another example

a 1_5kr
Lr: r5r (_)
8 PrOter 1 2/ k—r

pr = i.i.d.r.v. uniform between —1 and 1, k,r = —N/2,... N/2

a=.1,.5 1,2 N =301



Difficulties with intermediate-type
ensembles

e Matrices and related physical problems are not

invariant over the basis change

e Analytical results are rare and one has rely on

numerics

e Large variety of different behaviors and absence of

universality



Classical integrable systems

Calogero-Moser models

N
1 1
Tor H(p’Q):ZQp?_'_aQ Z (47 — qr)?
j=1 1<j<k<n 4 T 9k
N1, 1
It H(p,q) = ) _ 5p; + a0y’ .
jz=:1 277 4 137;@\1 Smhz(%(qa' — qk))
N1, |
I1Inr H(p,q) = —p? 4+ Za?u? .
Z 274 1§J§§N sin® (4 (¢ — ax)/2)

S
I
=

Ruijsenaars-Schneider model

N sin? 7a 2
-
IIb  H(p,q) = > cos(p;) | ]| <1  sin ))

2
j=1 kg %(QJ — gk




Integrability
A N-dim system = integrable, if 3 N integrals of motion /;(p, q)

Angle-action variables: I, = I,(p,q), ¢; = ¢,;(7,7)
L5,6) =0, ¢ =w;(I(7.q))

Canonicity: dpdg = dIdo

Lax matrices

Pair of matrices Ly, (P, q) and My, (p,q ) such that the equations
of motion are consequence of the Lax equation

L(B,qd) = [L(B,d) , M(B,q)]



Lax matrices for Calogero-Moser models

e Rational

]. - 5 r
Lkr — pr(skr +1a o
dkx — dr
e Hyperbolic
N(l - 5kr)

Lkr — prdkr +1a 5
2 sinh(u(ax — ar)/2)

e Trigonometric

N(l - 5kr)
2sin(p(ax — ar)/2)




Lax matrix for Ruijsenaars-Schneider model
Lyp = eipk+i(qk—qr)/2ckp (a; q)

C(a; q) is an orthogonal matrix (C - C* = 1)

) sin ra
sin (% + Wa)

Crpla; @) = W, *(a; § W /2(—a; q) .

where

Wj(av (_1)) — H




(General construction

Lax matrix L(p,q) = a random matrix depending on random
variables p and g distributed according to a "natural” measure

dL = P(p, q)dpdq

Integrability: canonical action-angle variables I, (p, q) and
¢a(ﬁa (_i) Hj dpj de — Ha dIoz d¢oz .

Usually I,(pP, q) = eigenvalues )\, of the Lax matrix or a simple

function of them. The canonical change of variables
dL =P(X, $)dXd o
The exact joint distribution of eigenvalues
P() = [P(.3)as

This scheme can be adapted to many different models



Angle-action variables for the Calogero model
1-— 6kr
dk — dr

Z Lkzrur = A uk Z uk — 5kr

Direct calculations: Lirqr — L = —ig(1 — 6krr) -
an(Am — )\n) — _ig(e:q,en — 5mn)

Z ug(m)grur(n Z up(m), Y Qmnuj(n) = qpuj(m)

One can choose e, = 1. Then

Lkr — pr(skr + lg

1_5mn
Am — An

an — Wm5mn - lg

Ruijsenaars proved that w,, = ¢,, are angle variables and

A = I, are action variables



Natural measure of random ensemble

Consider Lg, as a random matrix depending on p and ¢ with the
natural measure

dL ~ exp|—aTrL'L — ﬂZqz] dpdg

= exp|—« Zpk+g2z 2 —5291% dpdg
k

2753

In variables A and w this distribution can be rewritten as

dL ~ exp —OzZ)\2 — BTrQTQ ]dAdw

exp —OéZ)\2 Zw + g* Z dAdw .

m m;én




Exact joint distribution of eigenvalues for
Calogero-Moser ensemble

m=#£n

1
P()\l,...,AN)NeXp _QZ)\%_ﬁgQZ()\ _)\)2

Wigner-type surmise for the nearest-neighbor distribution

p(s) _ Ae—Bz/sz—Cs

In thermodynamic limit when N — oo coordinates g; are in a box
of length L — oo with N/L = constant the exact Lax matrix can
be simplified by fixing q ~ k

- 1-_ 35
Lix = pxdjk +ia——
! ! 2(j — k)

Here p; are i.i.d. random variables with uniform distribution
between —1 and 1 and j, k are integers from -N/2 till N/2



Numerics for Calogero-Moser ensemble

0.05

0

Wigner-type surmise p(s) = Ae—B?/s°—Cs

Fit B = .096, .618, 1.46, 3.11 fora = .1, .5, 1, 2



Fractal properties of eigenfunctions for
Calogero-Moser ensemble

(U2 — N~ DPa when N — oo

05 ]

a=0.1,0.51.0,1.5,2.0,5.0



Angle-action variables for Ruijsenaars model

Lyp = eiPKti(ak—ar)/2 Cip(a,q)

Cip(a, @) = W,/%(a; §)
° " sin (M + 7'('8.) P

Wj(av (_1)) — H

ngvzl Lkpup(q/) — )"yuk (7)7 )‘Oz — eieaa
Q'yﬁ' — 27]2[21 Unp, (V)qun u;; (5)

Q. = ei%ﬂ(‘%_eé)m(}%(—a, é’)

When L is unitary, 6, and ¢, = action-angle variables



Natural measure for Ruijsenaars model

R-S Hamiltonian is self-adjoint and the Lax matrix is unitary not
on the whole g-space but only on a subset of it when for all j
.2
. sin” a . .
V?(aaq)EH(l_ . 9 ) :Wj(aaq)Wj(_aaq)>O
U 6in%(q— a0/

R(a,d) = the characteristic function of this subset

~ 1 whenV;(a,q)>0,j=1,...,N
R(a,q) = .
0 otherwise

"Natural” measure for the RS ensemble = the uniform measure
dL ~ R(a,q)dpdd
By transforming this expression to action-angle variables one gets

P(d) ~ R(a,0)



Main lemma

Lyp = eipk+i(Qk_Qr)/2Ckp(a’ qd) ,

sin ra

Cup(a,d) = W, *(a, §)—

If this matriz is unitary then its eigenvalues are such that after the
rotation by £2ma in-between of any pairs of nearest eigenvalues

there exist one and only one rotated eigenvalue

Identity
etilae—ap+2ma) _ 1 4 o+i((gx—ap)/2+ma) sin((qx — qp)/2 + ma)
Two rank-one deformations

Né;t) _ Lkpe:ti(qk —qj+27a)

with known eigenfunctions and eigenvalues

Nli;t)qu(?i) _ Ac(xi)qjl(gi) ’ \Ij](j:) _ e:l:iqkuk(a) ’ Ac(xj:) _ e:|:27ria>\a






Geometrical unfolding

13 14

10 11 12

16

17

18

13

14

15

10

11

12

8

N = —1 mod q

Lemma: For a =m/q and mN = —k mod q with k=1, ..

etgenphases of matriz Ly, can be described as follows. Fix q

4

horizontal lines, put arbitrary points at the lowest line. Draw

N = —2 mod q

,q—1

staircase non-intersecting lines going only up and to the right with
the condition that they start at the lower line and end at last line

but with the shift by k units. Points at horizontal lines are situated

at the corners of the constructed lines.



Variation: a = b/N
Lemma: When o =b/N and N > N, at the angular distance of

2wb/N from each eigenvalue there exist exactly [b| eigenvalues

e When 0 < b < 1 the minimal distance between 2 eigenvalues is
2mb/N.

e When b > 1 the maximal distance between 2 eigenvalues is
27b/N. Example: 1 < b < 2

21th/ N

Xk+1 Xk+2




Transfer operator

Let 61 <0y <...<0n, & =011 — 0 and

1 when O b
flz) = BUST=Y @) =1 f(a),

0 otherwise

Joint probability of RS eigenphases inside an interval A

PE) ~ |1 £(sp)g(ss + &n)0(A =D &),
j=1 k=1

where S5 = fj + ...+ 'Sj—}—n—l and n = [b]

Exactly as a 1-d gas where each particle interacts with n = [b]
nearest-neighbors. Solution by transfer operator

In thermodynamic limit: ¢, — 27k/N
1 — eQﬂ'ib

N[l _ eQﬂ'i(k—p-l—b)/N]

Lkp — eip’“



O0<b<l1
Poisson distribution shifted by b

/
I/

B

)/
it
f

]
S

b=0.1,0.2,...,0.9




Fractal properties for 0 < b < 1

([W|?4) - N==DDP¢ when N — o

b=0.1,0.2,...,0.9



1<b<?2

Asinh®(ps) when 1 <b<4/3

5ls? when b=4/3

Asin®(ps)  when 4/3 <b <2

N=701
al=7/6, 8/6, 9/6, 10/6 (resp. black, red, green, blue)




b=4/3

81
p(s):6—452, 0<s<4/3
3 27 81
9 )\ — (22 3)a35/4—1 4
p(2,8) = (=5 + 755~ z55)e , 4/3<5<8/3

(3-8l BLsd)eds/ i1 1 8L2  4/3 <5< 8/3




a=9/4




Summary

Physical problems giving rise to intermediate statistics
— Anderson model at MIT
— Pseudo-integrable billiards

— Integrable systems with flux line

Large varieties of intermediate statistics

Absence of universality

Lax matrices of integrable classical systems give new soluble

ensembles of random matrices with intermediate statistics
Fractal properties of eigenfunctions for investigated models

New perspectives for intermediate statistics



