Random Matrix Theory, homework 1, due March 3.

Problem 1: the Selberg integral. The purpose of this problem is to calculate the partition function of Gaussian β -ensembles ($\beta > 0$), i.e. proving that

$$Z_N^{(\beta)} := \int_{\mathbb{R}^N} |\Delta(\lambda_1, \dots, \lambda_N)|^{\beta} e^{-N\frac{\beta}{4} \sum_{i=1}^N \lambda_i^2} d\lambda_1 \dots d\lambda_N = (2\pi)^{N/2} \left(\frac{\beta N}{2}\right)^{-\frac{N(N-1)\beta}{4} - \frac{N}{2}} \prod_{j=1}^N \frac{\Gamma(1+j\frac{\beta}{2})}{\Gamma\left(1+\frac{\beta}{2}\right)},$$

where $\Delta(\lambda_1, \ldots, \lambda_N) = \prod_{1 \leq i < j \leq N} (\lambda_i - \lambda_j)$ is the Vandermonde determinant. Here, $\Gamma(z) = \int e^{-t} t^{z-1} dz$ for $\Re(z) > 0$. First, we will prove the Selberg integral formula: for any $\gamma_1, \gamma_2 > -1$ and $\gamma \geq 0$,

$$S_{N}(\gamma_{1}, \gamma_{2}, \gamma) := \int_{[0,1]^{N}} \left(\prod_{i=1}^{N} t_{i} \right)^{\gamma_{1}} \left(\prod_{i=1}^{N} (1 - t_{i}) \right)^{\gamma_{2}} |\Delta(t_{1}, \dots, t_{N})|^{2\gamma} dt_{1} \dots dt_{N}$$

$$= \prod_{j=0}^{N-1} \frac{\Gamma(1 + \gamma_{1} + j\gamma)\Gamma(1 + \gamma_{2} + j\gamma)\Gamma(1 + (j+1)\gamma)}{\Gamma(2 + \gamma_{1} + \gamma_{2} + (N + j - 1)\gamma)\Gamma(1 + \gamma)}.$$
(2)

(i) Prove the Euler integral formula:

$$\int_{[0,1]} t^{\gamma_1} (1-t)^{\gamma_2} dt = \frac{\Gamma(1+\gamma_1)\Gamma(1+\gamma_2)}{\Gamma(2+\gamma_1+\gamma_2)},$$

by writing $\Gamma(1+\gamma_1)\Gamma(1+\gamma_2)$ as a double integral and making an appropriate change of variables.

(ii) In question (ii) to (vii), assume $\gamma \in \mathbb{N}$. Prove that

$$S_N(\gamma_1, \gamma_2, \gamma) = \sum_{0 \le n_1, \dots, n_N \le 2\gamma(N-1)} c_{n_1, \dots, n_N} \prod_{j=1}^N \frac{\Gamma(1 + \gamma_1 + n_j)\Gamma(1 + \gamma_2)}{\Gamma(2 + \gamma_1 + \gamma_2 + n_j)}$$

for some coefficients c_{n_1,\ldots,n_N} independent of γ_1 and γ_2 .

(iii) Prove that if $c_{n_1,...,n_N} \neq 0$ then $\sum_{i=1}^{N} n_i = N(N-1)\gamma$. Assuming additionally that $n_1 \leq \cdots \leq n_N$, prove that for any $j \in [1,N]$ we have

$$(j-1)\gamma \le n_j \le (N+j-2)\gamma.$$

For the first inequality, you can first consider j = N and then observe that $\Delta(t_1, \ldots, t_j)$ divides $\Delta(t_1,\ldots,t_N)$. For the second inequality, you can write $\Delta(t_1,\ldots,t_j)$ in terms of $\Delta(t_1^{-1},\ldots,t_j^{-1})$.

(iv) Prove that

$$S_N(\gamma_1, \gamma_2, \gamma) = \frac{P(\gamma_1, \gamma_2)}{Q(\gamma_2)} \prod_{j=0}^{N-1} \frac{\Gamma(1 + \gamma_1 + j\gamma)\Gamma(1 + \gamma_2 + j\gamma)\Gamma(1 + (j+1)\gamma)}{\Gamma(2 + \gamma_1 + \gamma_2 + (N+j-1)\gamma)\Gamma(1 + \gamma)}.$$

where P and Q are polynomials with the same degree in γ_2 .

- (v) By symmetry in γ_1 and γ_2 , prove that P/Q is actually a constant $c(\gamma, N)$.
- (vi) By ordering $t_1 \leq \cdots \leq t_N$ and conditioning on t_N , prove that

$$S_N(0,0,\gamma) = \frac{1}{\gamma(N-1)+1} S_{N-1}(0,2\gamma,\gamma)$$

- (vii) Conclude that (2) holds for any $\gamma \in \mathbb{N}$.
- (viii) Prove that (2) holds for any $\gamma > 0$. You can assume the following theorem by Carlson.

If f is analytic on $\Re \mathfrak{e}(z) \geq 0$, vanishes on $\mathbb N$ and $f(z) = O(e^{\mu z})$ with $\mu < \pi$, then f = 0 on $\Re \mathfrak{e}(z) > 0.$

(ix) Prove (1). Hint: $e^{-c\lambda^2} = \lim_{L \to \infty} (1 - \lambda/L)^{cL^2} (1 + \lambda/L)^{cL^2}$.

Problem 2: large deviations for the largest eigenvalue of Gaussian β -ensembles. In this problem, we consider the ordered eigenvalues of symmetric ($\beta = 1$) or Hermitian ($\beta = 2$) Gaussian matrices, i.e. the probability measure

$$d\mathbb{P}_N(\lambda_1,\ldots,\lambda_N) = \widetilde{Z}_N^{-1} |\Delta(\lambda_1,\ldots,\lambda_N)|^{\beta} e^{-N\frac{\beta}{4}\sum_{i=1}^N \lambda_i^2} \mathbb{1}_{\lambda_1 \leq \cdots \leq \lambda_N} d\lambda_1 \ldots d\lambda_N.$$

Let $\varrho(x) = \frac{1}{2\pi} \sqrt{(4-x^2)_+}$. We want to prove that λ_N satisfies a large deviations principle with good rate function

$$I(x) = \begin{cases} -\beta \int \log|x - y| \varrho(y) dy + \frac{\beta}{4} x^2 - \frac{\beta}{2} & \text{if } x \ge 2 \\ \infty & \text{if } x < 2 \end{cases}.$$

- (i) Give a closed form for Z_N .
- (ii) Show that

$$\mathbb{P}_{N}(\lambda_{N} > L) \leq \frac{\widetilde{Z}_{N-1}}{\widetilde{Z}_{N}} \int_{L}^{\infty} e^{-N\frac{\beta}{4}\lambda_{N}^{2}} d\lambda_{N} \int \prod_{i=1}^{N-1} \left(|\lambda_{N} - \lambda_{i}|^{\beta} e^{-\frac{\beta}{4}\lambda_{i}^{2}} \right) d\mathbb{P}_{N-1}(\lambda_{1}, \dots, \lambda_{N-1}).$$

Using $|x - \lambda_i| e^{-\frac{\lambda_i^2}{4}} \le C e^{\frac{x^2}{8}}$, conclude that

$$\lim_{L\to\infty}\limsup_{N\to\infty}\frac{1}{N}\log\mathbb{P}_N(\lambda_N>L)=-\infty.$$

(iii) Let $d\mathbb{P}'_N(\lambda_1,\ldots,\lambda_N) = \widetilde{Z_N'}^{-1} |\Delta(\lambda_1,\ldots,\lambda_N)|^{\beta} e^{-(N+1)\frac{\beta}{4}\sum_{i=1}^N \lambda_i^2} \mathbb{1}_{\lambda_1 \leq \cdots \leq \lambda_N} d\lambda_1 \ldots d\lambda_N$. Moreover, denote $\mathscr{B}(\varepsilon)$ the ball of radius ε around ϱ , for the distance $d(\mu,\nu) = \sup_{\|f\|_{\mathrm{Lip}} \leq 1} |\int f d\mu - \int f d\nu|$ (or any distance which metrizes the weak topology). Let $\mathscr{B}_L(\varepsilon)$ denote measures in $\mathscr{B}(\varepsilon)$ supported in [-L,L]. Prove that

$$\mathbb{P}_{N}(x < \lambda_{N} < L) \leq \mathbb{P}_{N}(\lambda_{1} < -L) + \frac{\widetilde{Z}'_{N-1}}{\widetilde{Z}_{N}} \left(\int_{x}^{L} e^{(N-1)\sup_{\mu \in \mathscr{B}_{L}(\varepsilon)} (\beta \int \log |\lambda - y| d\mu(y) - \frac{\beta}{4}\lambda^{2})} d\lambda + (L - x)e^{(N-1)\beta \log(2L)} \mathbb{P}'_{N-1} \left(\frac{1}{N-1} \sum_{k=1}^{N-1} \delta_{\lambda_{k}} \notin \mathscr{B}(\varepsilon) \right) \right)$$

Remember the large deviations principle for the empirical spectral measure. Prove that for any x > 2,

$$\limsup_{N \to \infty} \frac{1}{N} \log \mathbb{P}_N(\lambda_N \ge x) \le -I(x).$$

(iv) Let x > 2, and $r, \varepsilon > 0$ such that $2 < r < x - 2\epsilon$. Prove that

$$\mathbb{P}_{N}(x-\varepsilon < \lambda_{N} < x+\varepsilon) \geq \frac{\widetilde{Z}'_{N-1}}{\widetilde{Z}_{N}} \int_{x-\varepsilon}^{x+\varepsilon} d\lambda_{N} \int_{[-L,r]^{N-1}} e^{\beta \sum_{k=1}^{N-1} \log|\lambda_{N}-\lambda_{k}| - N\frac{\beta}{4}\lambda_{N}^{2}} d\mathbb{P}'_{N-1}(d\lambda_{1},\ldots,\lambda_{N-1}).$$

Show that for any $\varepsilon > 0$ and x > 2 we have

$$\lim_{\varepsilon \to 0} \liminf_{N \to \infty} \frac{1}{N} \log \mathbb{P}_N(x - \varepsilon < \lambda_N < x + \varepsilon) \ge -I(x).$$

- (v) Conclude the proof of the large deviations principle for λ_N .
- (vi) Give (with no proof) a large deviations principle for the distribution of $(\lambda_{N-k}, \dots, \lambda_N)$, where $k \geq 1$ is fixed.

Open problem. What would be the speed of a large deviations principle for the empirical spectral measure of a random symmetric Bernoulli matrix? What would be its rate function? Same question at the edge.