Random Matrix Theory, homework 1, due September 21.

Problem 1: the Selberg integral. The purpose of this problem is to calculate the partition function of Gaussian β-ensembles $(\beta \geq 0)$, i.e. proving that

$$
\begin{equation*}
Z_{N}^{(\beta)}:=\int_{\mathbb{R}^{N}}\left|\Delta\left(\lambda_{1}, \ldots, \lambda_{N}\right)\right|^{\beta} e^{-N \frac{\beta}{4} \sum_{i=1}^{N} \lambda_{i}^{2}} \mathrm{~d} \lambda_{1} \ldots \mathrm{~d} \lambda_{N}=(2 \pi)^{N / 2}\left(\frac{\beta N}{2}\right)^{-\frac{N(N-1) \beta}{4}-\frac{N}{2}} \prod_{j=1}^{N} \frac{\Gamma\left(1+j \frac{\beta}{2}\right)}{\Gamma\left(1+\frac{\beta}{2}\right)} \tag{1}
\end{equation*}
$$

where $\Delta\left(\lambda_{1}, \ldots, \lambda_{N}\right)=\prod_{1 \leq i<j \leq N}\left(\lambda_{i}-\lambda_{j}\right)$ is the Vandermonde determinant. Here, $\Gamma(z)=\int e^{-t} t^{z-1}$ for $\mathfrak{R e}(z)>0$. First, we will prove the Selberg integral formula: for any $\gamma_{1}, \gamma_{2}>-1$ and $\gamma \geq 0$,

$$
\begin{align*}
S_{N}\left(\gamma_{1}, \gamma_{2}, \gamma\right) & :=\int_{[0,1]^{N}}\left(\prod_{i=1}^{N} t_{i}\right)^{\gamma_{1}}\left(\prod_{i=1}^{N}\left(1-t_{i}\right)\right)^{\gamma_{2}}\left|\Delta\left(t_{1}, \ldots, t_{N}\right)\right|^{2 \gamma} \mathrm{~d} t_{1} \ldots \mathrm{~d} t_{N} \\
& =\prod_{j=0}^{N-1} \frac{\Gamma\left(1+\gamma_{1}+j \gamma\right) \Gamma\left(1+\gamma_{2}+j \gamma\right) \Gamma(1+(j+1) \gamma)}{\Gamma\left(2+\gamma_{1}+\gamma_{2}+(N+j-1) \gamma\right) \Gamma(1+\gamma)} \tag{2}
\end{align*}
$$

(i) Prove the Euler integral formula:

$$
\int_{[0,1]} t^{\gamma_{1}}(1-t)^{\gamma_{2}} \mathrm{~d} t=\frac{\Gamma\left(1+\gamma_{1}\right) \Gamma\left(1+\gamma_{2}\right)}{\Gamma\left(2+\gamma_{1}+\gamma_{2}\right)}
$$

by writing $\Gamma\left(1+\gamma_{1}\right) \Gamma\left(1+\gamma_{2}\right)$ as a double integral and making an appropriate change of variables.
(ii) In question (ii) to (vii), assume $\gamma \in \mathbb{N}$. Prove that

$$
S_{N}\left(\gamma_{1}, \gamma_{2}, \gamma\right)=\sum_{0 \leq n_{1}, \ldots, n_{N} \leq 2 \gamma(N-1)} c_{n_{1}, \ldots, n_{N}} \prod_{j=1}^{N} \frac{\Gamma\left(1+\gamma_{1}+n_{j}\right) \Gamma\left(1+\gamma_{2}\right)}{\Gamma\left(2+\gamma_{1}+\gamma_{2}+n_{j}\right)}
$$

for some coefficients $c_{n_{1}, \ldots, n_{N}}$ independent of γ_{1} and γ_{2}.
(iii) Prove that if $c_{n_{1}, \ldots, n_{N}} \neq 0$ then $\sum_{i=1}^{N} n_{i}=N(N-1) \gamma$. Assuming additionally that $n_{1} \leq \cdots \leq n_{N}$, prove that for any $j \in \llbracket 1, N \rrbracket$ we have

$$
(j-1) \gamma \leq n_{j} \leq(N+j-2) \gamma
$$

For the first inequality, you can first consider $j=N$ and then observe that $\Delta\left(t_{1}, \ldots, t_{j}\right)$ divides $\Delta\left(t_{1}, \ldots, t_{N}\right)$. For the second inequality, you can write $\Delta\left(t_{1}, \ldots, t_{j}\right)$ in terms of $\Delta\left(t_{1}^{-1}, \ldots, t_{j}^{-1}\right)$.
(iv) Prove that

$$
S_{N}\left(\gamma_{1}, \gamma_{2}, \gamma\right)=\frac{P\left(\gamma_{1}, \gamma_{2}\right)}{Q\left(\gamma_{2}\right)} \prod_{j=0}^{N-1} \frac{\Gamma\left(1+\gamma_{1}+j \gamma\right) \Gamma\left(1+\gamma_{2}+j \gamma\right) \Gamma(1+(j+1) \gamma)}{\Gamma\left(2+\gamma_{1}+\gamma_{2}+(N+j-1) \gamma\right) \Gamma(1+\gamma)}
$$

where P and Q are polynomials with the same degree in γ_{2}.
(v) By symmetry in γ_{1} and γ_{2}, prove that P / Q is actually a constant $c(\gamma, N)$.
(vi) By ordering $t_{1} \leq \cdots \leq t_{N}$ and conditioning on t_{N}, prove that

$$
S_{N}(0,0, \gamma)=\frac{1}{\gamma(N-1)+1} S_{N-1}(0,2 \gamma, \gamma)
$$

(vii) Conclude that (2) holds for any $\gamma \in \mathbb{N}$.
(viii) Prove that (2) holds for any $\gamma>0$. You can assume the following theorem by Carlson.

If f is analytic on $\mathfrak{R e}(z) \geq 0$, vanishes on \mathbb{N} and $f(z)=\mathrm{O}\left(e^{\mu z}\right)$ with $\mu<\pi$, then $f=0$ on $\mathfrak{R e}(z) \geq 0$.
(ix) Prove (1). Hint: $e^{-c \lambda^{2}}=\lim _{L \rightarrow \infty}(1-\lambda / L)^{c L^{2}}(1+\lambda / L)^{c L^{2}}$.

Problem 2. Loop equations and linear statistics for the Gaussian Unitary Ensemble. Consider the probability distribution of eigenvalues from the Gaussian Unitary Ensemble:

$$
\mu(\mathrm{d} \boldsymbol{\lambda})=\frac{1}{Z_{N}} \prod_{1 \leq k<\ell \leq N}\left|\lambda_{k}-\lambda_{\ell}\right|^{2} e^{-\frac{N}{2} \sum_{k=1}^{N} \lambda_{k}^{2}} \mathrm{~d} \lambda_{1} \ldots \mathrm{~d} \lambda_{N}
$$

on the simplex $\lambda_{1}<\cdots<\lambda_{N}$. For a smooth $f: \mathbb{R} \rightarrow \mathbb{R}$ supported on $(-2+\kappa, 2-\kappa)(\kappa>0)$ we consider the general linear statistics $S_{N}(f)=\sum_{k=1}^{N} f\left(\lambda_{k}\right)-N \int f(s) \varrho(s) \mathrm{d} s$, where $\varrho(s)=(2 \pi)^{-1} \sqrt{\left(4-s^{2}\right)_{+}}$. We want to prove the weak convergence of $S_{N}(f)$ to a Gaussian random variable for large N, with no need of any normalization.

We are interested in the Fourier transform $Z(u)=\mathbb{E}_{\mu}\left(e^{\mathrm{i} u S_{N}(f)}\right)$. We will need a complex modification of the GUE, namely $\mathrm{d} \mu^{u}(\boldsymbol{\lambda})=\frac{e^{\mathrm{i} u s_{N}(f)}}{Z(u)} \mathrm{d} \mu(\boldsymbol{\lambda})$, assuming that $Z(u) \neq 0$. Let $s_{N}(z)=\frac{1}{N} \sum_{k} \frac{1}{z-\lambda_{k}}$ and $m_{N, u}(z)=\mathbb{E}^{\mu^{u}}\left(s_{N}(z)\right)$. The Stieltjes transform of the semicircle distribution is $m(z)=\int \frac{\varrho(s)}{z-s} \mathrm{~d} s=$ $\frac{z-\sqrt{z^{2}-4}}{2}$, where the square root is chosen so that m is holomorphic on $[-2,2]^{\text {c }}$ and $m(z) \rightarrow 0$ as $|z| \rightarrow \infty$.
(i) Prove that

$$
\left(m_{N, u}(z)-m(z)\right)^{2}-\sqrt{z^{2}-4}\left(m_{N, u}(z)-m(z)\right)+\frac{\mathrm{i} u}{N} \int_{\mathbb{R}} \frac{f^{\prime}(s)}{z-s} \varrho_{1}^{(N, u)}(s) \mathrm{d} s=-\operatorname{var}_{\mu^{u}}\left(s_{N}(z)\right)
$$

This is called the (first) loop equation. To derive it, you may first prove that

$$
m_{N, u}(z)^{2}+\int_{\mathbb{R}} \frac{-s+\mathrm{i} u N^{-1} f^{\prime}(s)}{z-s} \varrho_{1}^{(N, u)}(s) \mathrm{d} s=-\operatorname{var}_{\mu^{u}}\left(s_{N}(z)\right)
$$

Hint: integrate by parts or change variables $\lambda_{k}=y_{k}+\varepsilon(\mathfrak{R e} / \Im \mathfrak{I m}) \frac{1}{z-y_{k}}$ and note $\partial_{\varepsilon=0} \log Z(u)=0$.
(ii) Remember the rigidity for Wigner matrices, in particular for GUE: for any $\xi, D>0$ there exists $C>0$ such that uniformly in $N \geq 1$ and $k \in \llbracket 1, N \rrbracket$ we have $\mu\left(\left|\lambda_{k}-\gamma_{k}\right|>N^{-\frac{2}{3}+\xi}(\hat{k})^{-\frac{1}{3}}\right) \leq$ $C N^{-D}$, where $\int_{-\infty}^{\gamma_{k}} \varrho(s \mathrm{~d} s)=\frac{k}{N}$ and $\hat{k}=\min (k, N+1-k)$. Assume $Z(u) \neq 0$. Prove that

$$
\left|\mu^{u}\right|\left(\left|\lambda_{k}-\gamma_{k}\right|>N^{-\frac{2}{3}+\xi}(\hat{k})^{-\frac{1}{3}}\right) \leq C \frac{N^{-D}}{|Z(u)|}
$$

where $\left|\mu^{u}\right|$ is the total variation of the complex measure μ^{u}. Conclude that uniformly in $z=E+\mathrm{i} \eta$, $-2+\kappa<E<2-\kappa, 0<|\eta|<1$, we have

$$
\left|\operatorname{var}_{\mu^{u}}\left(s_{N}(z)\right)\right|=\mathrm{O}\left(\frac{N^{-2+2 \xi}}{\eta^{2}|Z(u)|^{2}}\right) .
$$

(iii) Prove that uniformly in $-2+\kappa<E<2-\kappa, N^{-1+\xi} \leq \eta \leq 1$, we have

$$
m_{N, u}(z)-m(z)=\frac{1}{\sqrt{z^{2}-4}} \frac{\mathrm{i} u}{N} \int_{\mathbb{R}} \frac{f^{\prime}(s)}{z-s} \varrho(s) \mathrm{d} s+\mathrm{O}\left(\frac{N^{-2+3 \xi}}{\eta^{2}|Z(u)|^{2}}\right)
$$

(iv) Let $\chi: \mathbb{R} \rightarrow \mathbb{R}^{+}$be a smooth function such that $\chi(y)=1$ for $|y|<1 / 2$ and $\chi(y)=0$ for $|y|>1$. Prove that for any $\lambda \in \mathbb{R}$, we have

$$
f(\lambda)=-\frac{1}{2 \pi} \iint_{\mathbb{R}^{2}} \frac{\mathrm{i} y f^{\prime \prime}(x) \chi(y)+\mathrm{i}\left(f(x)+\mathrm{i} y f^{\prime}(x)\right) \chi^{\prime}(y)}{x+\mathrm{i} y-\lambda} \mathrm{d} x \mathrm{~d} y
$$

where the right hand side converges absolutely. For this, you can reproduce the proof of Cauchy's integral formula based on Green's theorem, considering the quasi-analytic extension $(f(x)+$ i $\left.y f^{\prime}(x)\right) \chi(y)$.
(v) Note that $\partial_{u} \log Z(u)=\mathbb{E}_{\mu^{u}}\left(\mathrm{i} S_{N}(f)\right)$. Conclude that bulk linear statistics converge to a Gaussian random variable.

