
Random Matrix Theory, homework 1, due September 21.

Problem 1: the Selberg integral. The purpose of this problem is to calculate the partition function
of Gaussian β-ensembles (β ≥ 0), i.e. proving that

Z
(β)
N :=

∫
RN
|∆(λ1, . . . , λN )|βe−N

β
4

∑N
i=1 λ

2
i dλ1 . . . dλN = (2π)N/2

(
βN

2

)−N(N−1)β
4 −N2 N∏

j=1

Γ(1 + j β2 )

Γ
(

1 + β
2

) ,
(1)

where ∆(λ1, . . . , λN ) =
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1≤i<j≤N (λi − λj) is the Vandermonde determinant. Here, Γ(z) =
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for Re(z) > 0. First, we will prove the Selberg integral formula: for any γ1, γ2 > −1 and γ ≥ 0,
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(i) Prove the Euler integral formula:∫
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by writing Γ(1+γ1)Γ(1+γ2) as a double integral and making an appropriate change of variables.
(ii) In question (ii) to (vii), assume γ ∈ N. Prove that
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for some coefficients cn1,...,nN independent of γ1 and γ2.

(iii) Prove that if cn1,...,nN 6= 0 then
∑N
i=1 ni = N(N−1)γ. Assuming additionally that n1 ≤ · · · ≤ nN ,

prove that for any j ∈ J1, NK we have
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For the first inequality, you can first consider j = N and then observe that ∆(t1, . . . , tj) divides

∆(t1, . . . , tN ). For the second inequality, you can write ∆(t1, . . . , tj) in terms of ∆(t−11 , . . . , t−1j ).

(iv) Prove that
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where P and Q are polynomials with the same degree in γ2.
(v) By symmetry in γ1 and γ2, prove that P/Q is actually a constant c(γ,N).
(vi) By ordering t1 ≤ · · · ≤ tN and conditioning on tN , prove that
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(vii) Conclude that (2) holds for any γ ∈ N.
(viii) Prove that (2) holds for any γ > 0. You can assume the following theorem by Carlson.

If f is analytic on Re(z) ≥ 0, vanishes on N and f(z) = O(eµz) with µ < π, then f = 0 on
Re(z) ≥ 0.
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Problem 2. Loop equations and linear statistics for the Gaussian Unitary Ensemble.
Consider the probability distribution of eigenvalues from the Gaussian Unitary Ensemble:
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on the simplex λ1 < · · · < λN . For a smooth f : R→ R supported on (−2+κ, 2−κ) (κ > 0) we consider
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We want to prove the weak convergence of SN (f) to a Gaussian random variable for large N , with no
need of any normalization.

We are interested in the Fourier transform Z(u) = Eµ(eiuSN (f)).We will need a complex modification

of the GUE, namely dµu(λ) = eiuSN (f)
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(i) Prove that
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This is called the (first) loop equation. To derive it, you may first prove that
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Hint: integrate by parts or change variables λk = yk+ε(Re/Im) 1
z−yk and note ∂ε=0 logZ(u) = 0.

(ii) Remember the rigidity for Wigner matrices, in particular for GUE: for any ξ,D > 0 there exists
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where |µu| is the total variation of the complex measure µu. Conclude that uniformly in z = E+iη,
−2 + κ < E < 2− κ, 0 < |η| < 1, we have
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(iii) Prove that uniformly in −2 + κ < E < 2− κ, N−1+ξ ≤ η ≤ 1, we have
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(iv) Let χ : R→ R+ be a smooth function such that χ(y) = 1 for |y| < 1/2 and χ(y) = 0 for |y| > 1.
Prove that for any λ ∈ R, we have

f(λ) = − 1

2π

∫∫
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iyf ′′(x)χ(y) + i(f(x) + iyf ′(x))χ′(y)
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where the right hand side converges absolutely. For this, you can reproduce the proof of Cauchy’s
integral formula based on Green’s theorem, considering the quasi-analytic extension (f(x) +
iyf ′(x))χ(y).

(v) Note that ∂u logZ(u) = Eµu(iSN (f)). Conclude that bulk linear statistics converge to a Gaussian
random variable.


