
Random Matrix Theory, homework 1, due October 8.

Exercise 1: Klein’s lemma. Let f : R → R be convex, and HN the set of N × N Hermitian
matrices. Prove that {

HN → R
H 7→ Tr f(H)

is convex.

Exercise 2: concentration of the Stieltjes transform. Let H be a random matrix from the

N ×N Gaussian orthogonal ensemble with the usual normalization, i.e. it has density e−
N
4 Tr(H2) with

respect to the Lebesgue measure on the symmetric matrices. Prove that there exists c > 0 such that
for any t > 0, N ≥ 1 and z = E + iη ∈ H we have

P
(∣∣∣∣ 1N Tr

1

H − z
− E

1

N
Tr

1

H − z

∣∣∣∣ ≥ t

)
≤ c−1e−cN2t2η4

.

Same question when H is symmetric with independent entries (in the upper triangle) bounded with
N−1/2.

Exercise 3: concentration of individual eigenvalues. Let H be a N × N symmetric random
matrix such that |Hij | ≤ 1 for any i, j. The goal of this exercise is to prove that for any 1 ≤ k ≤ N
and t > 0 we have

P(|λk −M(λk)| ≥ t) ≤ 4e−
t2

32k2 ,

where λN ≤ · · · ≤ λ1, the λk’s are the eigenvalues of H and M(λk) is the median of λk.

(i) Let S be the set of N ×N symmetric random matrices, t > 0, A = {A ∈ S : λk(A) ≤ M(λk))}
and B = {B ∈ S : λk(B) ≥ M(λk) + t)}. Let (vℓ)1≤ℓ≤N be the normalized eigenvectors of some
B ∈ B (Bvℓ = λk(B)vℓ) and

αii =

k∑
ℓ=1

|vℓ(i)|2, αij = 2
( k∑
ℓ=1

|vℓ(i)|2
)1/2 · ( k∑

ℓ=1

|vℓ(j)|2
)1/2

.

Prove that
∑

1≤i≤j≤k α
2
ij ≤ 2k2.

(ii) Prove that for any A ∈ A we have
∑

1≤i≤j≤N :Aij ̸=Bij
αij ≥ t

2 .

(iii) Conclude.

(iv) Open problem: is there an absolute c such that P(|λk −M(λk)| ≥ t) ≤ c−1e−ct2 for any k, t > 0?

Exercise 4: eigenvalues distribution for the Ginibre ensemble. Read and reproduce the proof
of Theorem 15.1.1 in Log gases and random matrices, to obtain the following fact. If G has density
e−Tr(GG∗) with respect to the Lebesgue density on N × N matrices (complex entires, no symmetry
assumption), then writing X = UTU∗ for its Schur form, the matrix T has density (λi = Tii and
Tij , i < j are the only non-zero entries) w.r.t the Lebesgue measure proportional to∏

i<j

|λi − λj |2e−
∑N

i=1 |λi|2e−
∑

i<j |Tij |2 .

In particular the spectrum has density
∏

i<j |λi − λj |2e−
∑N

i=1 |λi|2 .
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Problem 1: the Selberg integral. The purpose of this problem is to calculate the partition function
of Gaussian β-ensembles (β ≥ 0), i.e. proving that

Z
(β)
N :=

∫
RN

|∆(λ1, . . . , λN )|βe−N β
4

∑N
i=1 λ2

i dλ1 . . . dλN = (2π)N/2

(
βN

2

)−N(N−1)β
4 −N

2
N∏
j=1

Γ(1 + j β
2 )

Γ
(
1 + β

2

) ,
(1)

where ∆(λ1, . . . , λN ) =
∏

1≤i<j≤N (λi − λj) is the Vandermonde determinant. Here, Γ(z) =
∫
e−ttz−1

for Re(z) > 0. First, we will prove the Selberg integral formula: for any γ1, γ2 > −1 and γ ≥ 0,

SN (γ1, γ2, γ) :=

∫
[0,1]N

(
N∏
i=1

ti

)γ1 ( N∏
i=1

(1− ti)

)γ2

|∆(t1, . . . , tN )|2γdt1 . . . dtN

=

N−1∏
j=0

Γ(1 + γ1 + jγ)Γ(1 + γ2 + jγ)Γ(1 + (j + 1)γ)

Γ(2 + γ1 + γ2 + (N + j − 1)γ)Γ(1 + γ)
. (2)

(i) Prove the Euler integral formula:∫
[0,1]

tγ1(1− t)γ2dt =
Γ(1 + γ1)Γ(1 + γ2)

Γ(2 + γ1 + γ2)
,

by writing Γ(1+γ1)Γ(1+γ2) as a double integral and making an appropriate change of variables.
(ii) In question (ii) to (vii), assume γ ∈ N. Prove that

SN (γ1, γ2, γ) =
∑

0≤n1,...,nN≤2γ(N−1)

cn1,...,nN

N∏
j=1

Γ(1 + γ1 + nj)Γ(1 + γ2)

Γ(2 + γ1 + γ2 + nj)

for some coefficients cn1,...,nN
independent of γ1 and γ2.

(iii) Prove that if cn1,...,nN
̸= 0 then

∑N
i=1 ni = N(N−1)γ. Assuming additionally that n1 ≤ · · · ≤ nN ,

prove that for any j ∈ J1, NK we have

(j − 1)γ ≤ nj ≤ (N + j − 2)γ.

For the first inequality, you can first consider j = N and then observe that ∆(t1, . . . , tj) divides

∆(t1, . . . , tN ). For the second inequality, you can write ∆(t1, . . . , tj) in terms of ∆(t−1
1 , . . . , t−1

j ).

(iv) Prove that

SN (γ1, γ2, γ) =
P (γ1, γ2)

Q(γ2)

N−1∏
j=0

Γ(1 + γ1 + jγ)Γ(1 + γ2 + jγ)Γ(1 + (j + 1)γ)

Γ(2 + γ1 + γ2 + (N + j − 1)γ)Γ(1 + γ)
.

where P and Q are polynomials with the same degree in γ2.
(v) By symmetry in γ1 and γ2, prove that P/Q is actually a constant c(γ,N).
(vi) By ordering t1 ≤ · · · ≤ tN and conditioning on tN , prove that

SN (0, 0, γ) =
1

γ(N − 1) + 1
SN−1(0, 2γ, γ)

(vii) Conclude that (2) holds for any γ ∈ N.
(viii) Prove that (2) holds for any γ > 0. You can assume the following theorem by Carlson.

If f is analytic on Re(z) ≥ 0, vanishes on N and f(z) = O(eµz) with µ < π, then f = 0 on
Re(z) ≥ 0.

(ix) Prove (1). Hint: e−cλ2

= limL→∞(1− λ/L)cL
2

(1 + λ/L)cL
2

.
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Problem 2. Loop equations and linear statistics for the Gaussian Unitary Ensemble.
Consider the probability distribution of eigenvalues from the Gaussian Unitary Ensemble:

µ(dλ) =
1

ZN

∏
1≤k<ℓ≤N

|λk − λℓ|2e−
N
2

∑N
k=1 λ2

kdλ1 . . . dλN

on the simplex λ1 < · · · < λN . For a smooth f : R → R supported on (−2+κ, 2−κ) (κ > 0) we consider

the general linear statistics SN (f) =
∑N

k=1 f(λk) −N
∫
f(s)ϱ(s)ds, where ϱ(s) = (2π)−1

√
(4− s2)+.

We want to prove the weak convergence of SN (f) to a Gaussian random variable for large N , with no
need of any normalization.

We are interested in the Fourier transform Z(u) = Eµ(e
iuSN (f)).We will need a complex modification

of the GUE, namely dµu(λ) = eiuSN (f)

Z(u) dµ(λ), assuming that Z(u) ̸= 0. Let sN (z) = 1
N

∑
k

1
z−λk

and

mN,u(z) = Eµu

(sN (z)). The Stieltjes transform of the semicircle distribution is m(z) =
∫ ϱ(s)

z−sds =
z−

√
z2−4
2 , where the square root is chosen so that m is holomorphic on [−2, 2]c and m(z) → 0 as

|z| → ∞.

(i) We denote the first correlation function ϱ
(N,u)
1 , i.e. this is the unique continuous function such

that Eµu

[
∑

i f(λi)] = N
∫
fϱ

(N,u)
1 for any continuous, bounded f . Prove that

(mN,u(z)−m(z))2 −
√
z2 − 4 (mN,u(z)−m(z)) +

iu

N

∫
R

f ′(s)

z − s
ϱ
(N,u)
1 (s)ds = −varµu (sN (z)) .

This is called the (first) loop equation. To derive it, you may first prove that

mN,u(z)
2 +

∫
R

−s+ iuN−1f ′(s)

z − s
ϱ
(N,u)
1 (s)ds = −varµu (sN (z)) .

Hint: integrate by parts or change variables λk = yk+ε(Re/Im) 1
z−yk

and note ∂ε=0 logZ(u) = 0.

(ii) Remember the rigidity for Wigner matrices, in particular for GUE: for any ξ,D > 0 there exists

C > 0 such that uniformly in N ≥ 1 and k ∈ J1, NK we have µ
(
|λk − γk| > N− 2

3+ξ(k̂)−
1
3

)
≤

CN−D, where
∫ γk

−∞ ϱ(sds) = k
N and k̂ = min(k,N + 1− k). Assume Z(u) ̸= 0. Prove that

|µu|
(
|λk − γk| > N− 2

3+ξ(k̂)−
1
3

)
≤ C

N−D

|Z(u)|
,

where |µu| is the total variation of the complex measure µu. Conclude that uniformly in z = E+iη,
−2 + κ < E < 2− κ, 0 < |η| < 1, we have

|varµu (sN (z))| = O

(
N−2+2ξ

η2|Z(u)|2

)
.

(iii) Prove that uniformly in −2 + κ < E < 2− κ, N−1+ξ ≤ η ≤ 1, we have

mN,u(z)−m(z) =
1√

z2 − 4

iu

N

∫
R

f ′(s)

z − s
ϱ(s)ds+O

(
N−2+3ξ

η2|Z(u)|2

)
.

(iv) Let χ : R → R+ be a smooth function such that χ(y) = 1 for |y| < 1/2 and χ(y) = 0 for |y| > 1.
Prove that for any λ ∈ R, we have

f(λ) = − 1

2π

∫∫
R2

iyf ′′(x)χ(y) + i(f(x) + iyf ′(x))χ′(y)

x+ iy − λ
dxdy,

where the right hand side converges absolutely. For this, you can reproduce the proof of Cauchy’s
integral formula based on Green’s theorem, considering the quasi-analytic extension (f(x) +
iyf ′(x))χ(y).

(v) Note that ∂u logZ(u) = Eµu(iSN (f)). Conclude that bulk linear statistics converge to a Gaussian
random variable.


