Random Matrix Theory, homework 1, due October 8.

Exercise 1: Klein’s lemma. Let f : R — R be convex, and Hy the set of N x N Hermitian
matrices. Prove that

HN — R
{H — Tr f(H)

is convex.

Exercise 2: concentration of the Stieltjes transform. Let H be a random matrix from the
N x N Gaussian orthogonal ensemble with the usual normalization, i.e. it has density e~ TT(H?) with
respect to the Lebesgue measure on the symmetric matrices. Prove that there exists ¢ > 0 such that
forany t >0, N > 1 and z = E +in € H we have
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Same question when H is symmetric with independent entries (in the upper triangle) bounded with
N-1/2,

‘ > t) < ¢lemeNEnt

Exercise 3: concentration of individual eigenvalues. Let H be a N x N symmetric random
matrix such that |H;;| <1 for any 4, j. The goal of this exercise is to prove that for any 1 <k < N
and t > 0 we have )

B(Ihe — MOW)| > 8) < 4”557,
where Ay < --- < \q, the A\;’s are the eigenvalues of H and M(\) is the median of Ag.

(i) Let S be the set of N x N symmetric random matrices, t > 0, A={A € S: M\;(4) < M(\))}
and B={B €S : M\(B)> M(\:)+t)}. Let (ve)1<e<n be the normalized eigenvectors of some
B € B (Bvy = M\p(B)vg) and
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Prove that 3°, ;< af; < 2k%.
(ii) Prove that for any A € A we have ZlSiSjSN:Ai_j?fBi_] @i > 5.
(iii) Conclude.
(iv) Open problem: is there an absolute ¢ such that P(|A\y — M(A;)| > t) < ¢~ te=" for any k, ¢ > 07

Exercise 4: eigenvalues distribution for the Ginibre ensemble. Read and reproduce the proof
of Theorem 15.1.1 in Log gases and random matrices, to obtain the following fact. If G has density
e~ T(GG%) with respect to the Lebesgue density on N x N matrices (complex entires, no symmetry
assumption), then writing X = UTU* for its Schur form, the matrix 7" has density (A, = T;; and
T;j,1 < j are the only non-zero entries) w.r.t the Lebesgue measure proportional to
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In particular the spectrum has density Hl <
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Problem 1: the Selberg integral. The purpose of this problem is to calculate the partition function
of Gaussian S-ensembles (8 > 0), i.e. proving that
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where A(A1, ..., AN) = [Ty, ;< (A — A;) is the Vandermonde determinant. Here, T'(2) = [ e~ ">

for Re(z) > 0. First, we will prove the Selberg integral formula: for any 71,72 > —1 and v >0,
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(i) Prove the Euler integral formula:
ra ra
/ (1 — t)2dt = (L4+y)I(1 +2)
[0.1] L2 +7+172)

by writing I'(1+71)T'(14+72) as a double integral and making an appropriate change of variables.
(ii) In question (ii) to (vii), assume v € N. Prove that

ﬂ (491 +n;)I(1 +72)
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SN (71,72,7) = Z .....

0<ny,...,nN<2y(N—1) Jj=1

for some coefficients ¢, ... n, independent of v; and .
(iii) Prove that if ¢y, .. ny 7 0 then Zi\; n; = N(N—1)v. Assuming additionally that ny < --- < ny,
prove that for any j € [1, N] we have

(G-Dy<n; <(N+j-2)

For the first inequality, you can first consider j = N and then observe that A(ty,...,t;) divides
A(t1,...,tn). For the second inequality, you can write A(t1,...,t;) in terms of At tj_l).
(iv) Prove that

~ Plyye) T4 DA+ + )T+ 72 + 9T + (G + 1))
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where P and @ are polynomials with the same degree in 5.
(v) By symmetry in 7 and 79, prove that P/@Q is actually a constant ¢(~y, N).
(vi) By ordering ¢; < --- <ty and conditioning on ¢y, prove that
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(vii) Conclude that (2) holds for any v € N.
(viii) Prove that (2) holds for any v > 0. You can assume the following theorem by Carlson.

If f is analytic on Re(z) > 0, vanishes on N and f(z) = O(e*) with p < 7, then f =0 on
Re(z) > 0.

(ix) Prove (1). Hint: e~ = limj_,o0(1 — A/L)°L* (1 4+ A/L)°E
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Problem 2. Loop equations and linear statistics for the Gaussian Unitary Ensemble.
Consider the probability distribution of eigenvalues from the Gaussian Unitary Ensemble:

J(dA) = —— [T = AdPe F i Xan . day
N i<k<e<n
on the simplex A; < --- < Ay . Forasmooth f: R — R supported on (—2+k,2—k) (k > 0) we consider
the general linear statistics Sy (f) = Zk L FOw) = N [ f(s)o(s)ds, where o(s) = (2m)"'/(4 — s?) 4.
We want to prove the weak convergence of Sy (f) to a Gaubuan random variable for large N, with no
need of any normalization.
We are interested in the Fourier transform Z(u) = E,, (e~ (f)). We will need a complex modification

of the GUE, namely du*“(X) = msN(f) dp(X), assuming that Z(u) # 0. Let sy(z) = ]{[ k3 1/\k and
myu(z) = E*" (sn(z)). The StleltJes transform of the semicircle distribution is m(z) = [ £ Q(S tds =
EmvE s V222_4, where the square root is chosen so that m is holomorphic on [—2,2]° and m(z) — 0 as
(i) We denote the ﬁrst correlation function gﬁN’“), i.e. this is the unique continuous function such
that EX >, f)]=N[ fg N gor any continuous, bounded f. Prove that
2 5 iu [ f(s) (v _
(mNnwu(z) —m(2) — V22 —4d(myu(z) —m(z)) + i s (s)ds = —var,u (sy(2)) .
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This is called the (first) loop equation. To derive it, you may first prove that

_ 3 —1 ¢/
myu(2)? —|—/R s HiuNT f(s) oM (s)ds = —var, (sy(2)).
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Hint: integrate by parts or change variables A\, = ;. —I—S(D%e/fim)— and note Je—¢ log Z(u) = 0.
(ii) Remember the rigidity for Wigner matrices, in particular for GUE for any &, D > 0 there exists

C > 0 such that uniformly in N > 1 and &k € [1, N] we have u (|)\k — e > N=3+E(k) 3 ) <
CN=P, where [* p(sds) = £ and k = min(k, N + 1 — k). Assume Z(u) # 0. Prove that
N—D
Cerrx
1Z(w)|”

where || is the total variation of the complex measure p*. Conclude that uniformly in z = E+in,
-2+ K< E<2-k,0<|n <1, we have

] (1 =l > N7+ ) <

2426
[var,u (sy(2))] = O <772|Z(u)|2)

(iii) Prove that uniformly in =2+ x < E < 2 — k, N7+ <5 < 1, we have
1 iu f/(S) ( )d +O< N—2+3£ )

- = $)ds A
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(iv) Let x : R = R™ be a smooth function such that x(y) =1 for |y| < 1/2 and x(y) = 0 for |y| > 1.
Prove that for any A € R, we have
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where the right hand side converges absolutely. For this, you can reproduce the proof of Cauchy’s
integral formula based on Green’s theorem, considering the quasi-analytic extension (f(x) +

iy f'(x))x(y)-
(v) Note that 9, log Z(u) = E,u(iSn(f)). Conclude that bulk linear statistics converge to a Gaussian
random variable.
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