Random Matrix Theory, homework 2, due November 19.

Problem 1. The Circular Unitary Ensemble is a log-correlated random field. Let $(e^{i\theta_k})_{1 \le k \le N}$ be the eigenvalues of a Haar-distributed matrix in U(N). The eigenangles have joint probability distribution

$$\mathbb{P}(\mathrm{d}\boldsymbol{\theta}) = \frac{1}{N!} \prod_{1 \le i < j \le N} |e^{\mathrm{i}\theta_i} - e^{\mathrm{i}\theta_j}|^2 \frac{\mathrm{d}\theta_1}{2\pi} \cdots \frac{\mathrm{d}\theta_N}{2\pi}$$

(i) Prove that $\chi = \sum_{k=1}^{N} \delta_{\theta_k}$ is a determiniantal point process with correlation kernel

$$K(x,y) = K^{(N)}(x,y) = \frac{1}{2\pi} \frac{\sin N \frac{x-y}{2}}{\sin \frac{x-y}{2}}$$

with respect to the Lebesgue measure on $(0, 2\pi)$.

(ii) Let $\phi: [0, 2\pi) \to \mathbb{R}$ be bounded measurable. Prove that

$$\mathbb{E}\prod_{k=1}^{N} (1+\phi(\theta_k)) = \sum_{n\geq 0} \frac{1}{n!} \int_{(0,2\pi)^n} \prod_{j=1}^{n} \phi(x_j) \det_{n\times n} K(x_i, x_j) \mathrm{d}x_1 \dots \mathrm{d}x_n.$$

You will need to explain why the right hand side converges.

- (iii) Read Section 3 in the book *Trace ideals and applications*.
- (iv) Let $A \subset [0, 2\pi)$ be measurable. On $L^2(A)$, define $K\phi$ the convolution operator with kernel $K\phi$, where ϕ is bounded measurable:

$$(K\phi)(f)(x) = \int K(x,y)\phi(y)f(y)\mathrm{d}y.$$

Prove that $K \mathbb{1}_A$ is trace-class with spectrum in [0, 1]. Let $X = \chi(A)$. Show that

$$\log \mathbb{E}(e^{\mathrm{i}\xi X}) = \log \det(\mathrm{Id} + K\mathbb{1}_A(e^{\mathrm{i}\xi} - 1)) = -\sum_{k=1}^{\infty} \frac{(1 - e^{\mathrm{i}\xi})^k}{k} \mathrm{Tr}((K\mathbb{1}_A)^k).$$

(v) The formula $\log \mathbb{E}(e^{i\xi X}) = \sum_{\ell=1}^{\infty} C_{\ell}(X) \frac{(i\xi)^{\ell}}{\ell!}$ defines the cumulants $C_{\ell}(X)$ of the random variable X. Prove that for any $\ell \geq 3$,

$$C_{\ell}(X) = (-1)^{\ell} (\ell - 1)! \operatorname{Tr}(K \mathbb{1}_{A} - (K \mathbb{1}_{A})^{\ell}) + \sum_{j=2}^{\ell-1} \alpha_{j\ell} C_{j}(X)$$

for some universal constants $\alpha_{i\ell}$.

(vi) Take A = [0, x) ($x \in (0, 2\pi)$) in this question and the next one. Prove that

$$C_2(X) = \int_0^x du \int_x^{2\pi} dv |K(u,v)|^2 \underset{N \to \infty}{\sim} \pi^{-2} \log N.$$

(vii) Prove that $C_{\ell}(X/\sqrt{\log N})$ converges to 0 as $N \to \infty$ for any $\ell \geq 3$. For this you can first prove the trace inequality

$$0 \le \operatorname{Tr}(K\mathbb{1}_A - (K\mathbb{1}_A)^{\ell}) \le (\ell - 1)\operatorname{Tr}(K\mathbb{1}_A - (K\mathbb{1}_A)^2).$$

Show that $(X - \mathbb{E}X)/\sqrt{\log N}$ converges weakly to a Gaussian random variable with variance

 π^{-2} . Compare this result to the case of N independent uniform points on the circle. (viii) Consider $X_k = \chi([0, x_k)) - Nx_k/(2\pi)$ where $x_k = N^{-\alpha_k}$, $0 < \alpha_1 < \cdots < \alpha_\ell < 1$. Prove a joint central limit theorem for the random variables X_1, \ldots, X_ℓ as $N \to \infty$. Compare this result to the case of N independent uniform points on the circle.

Problem 2: large deviations for the largest eigenvalue of Gaussian β -ensembles. In this problem, we consider the ordered eigenvalues of symmetric ($\beta = 1$) or Hermitian ($\beta = 2$) Gaussian matrices, i.e. the probability measure

$$\mathbb{d}\mathbb{P}_{N}(\lambda_{1},\ldots,\lambda_{N}) = \widetilde{Z}_{N}^{-1} |\Delta(\lambda_{1},\ldots,\lambda_{N})|^{\beta} e^{-N\frac{\beta}{4}\sum_{i=1}^{N}\lambda_{i}^{2}} \mathbb{1}_{\lambda_{1}\leq\cdots\leq\lambda_{N}} \mathrm{d}\lambda_{1}\ldots\mathrm{d}\lambda_{N}.$$

Let $\rho(x) = \frac{1}{2\pi}\sqrt{(4-x^2)_+}$. We want to prove that λ_N satisfies a large deviations principle with good rate function

$$I(x) = \begin{cases} -\beta \int \log |x - y| \varrho(y) dy + \frac{\beta}{4} x^2 - \frac{\beta}{2} & \text{if } x \ge 2\\ \infty & \text{if } x < 2 \end{cases}.$$

- (i) Give a closed form for \widetilde{Z}_N .
- (ii) Show that

$$\mathbb{P}_{N}(\lambda_{N} > L) \leq \frac{\widetilde{Z}_{N-1}}{\widetilde{Z}_{N}} \int_{L}^{\infty} e^{-N\frac{\beta}{4}\lambda_{N}^{2}} \mathrm{d}\lambda_{N} \int \prod_{i=1}^{N-1} \left(|\lambda_{N} - \lambda_{i}|^{\beta} e^{-\frac{\beta}{4}\lambda_{i}^{2}} \right) \mathrm{d}\mathbb{P}_{N-1}(\lambda_{1}, \dots, \lambda_{N-1}).$$

Using $|x - \lambda_i| e^{-\frac{\lambda_i^2}{4}} \leq C e^{\frac{x^2}{8}}$, conclude that

$$\lim_{L \to \infty} \limsup_{N \to \infty} \frac{1}{N} \log \mathbb{P}_N(\lambda_N > L) = -\infty.$$

(iii) Let $d\mathbb{P}'_N(\lambda_1, \dots, \lambda_N) = \widetilde{Z'_N}^{-1} |\Delta(\lambda_1, \dots, \lambda_N)|^{\beta} e^{-(N+1)\frac{\beta}{4}\sum_{i=1}^N \lambda_i^2} \mathbb{1}_{\lambda_1 \leq \dots \leq \lambda_N} d\lambda_1 \dots d\lambda_N$. More-over, denote $\mathscr{B}(\varepsilon)$ the ball of radius ε around ϱ , for the distance $d(\mu, \nu) = \sup_{\|f\|_{\mathrm{Lip}} \leq 1} |\int f d\mu - I(\mu) d\mu$. $\int f d\nu |$ (or any distance which metrizes the weak topology). Let $\mathscr{B}_L(\varepsilon)$ denote measures in $\mathscr{B}(\varepsilon)$ supported in [-L, L]. Prove that

$$\mathbb{P}_{N}(x < \lambda_{N} < L) \leq \mathbb{P}_{N}(\lambda_{1} < -L) + \frac{\widetilde{Z}_{N-1}'}{\widetilde{Z}_{N}} \left(\int_{x}^{L} e^{(N-1)\sup_{\mu \in \mathscr{B}_{L}(\varepsilon)}(\beta \int \log |\lambda - y| d\mu(y) - \frac{\beta}{4}\lambda^{2})} d\lambda + (L-x)e^{(N-1)\beta\log(2L)}\mathbb{P}_{N-1}' \left(\frac{1}{N-1} \sum_{k=1}^{N-1} \delta_{\lambda_{k}} \notin \mathscr{B}(\varepsilon) \right) \right)$$

Remember the large deviations principle for the empirical spectral measure. Prove that for any x > 2,

$$\limsup_{N \to \infty} \frac{1}{N} \log \mathbb{P}_N(\lambda_N \ge x) \le -I(x).$$

(iv) Let x > 2, and $r, \varepsilon > 0$ such that $2 < r < x - 2\epsilon$. Prove that

$$\mathbb{P}_{N}(x-\varepsilon < \lambda_{N} < x+\varepsilon) \geq \frac{Z'_{N-1}}{\widetilde{Z}_{N}} \int_{x-\varepsilon}^{x+\varepsilon} \mathrm{d}\lambda_{N} \int_{[-L,r]^{N-1}} e^{\beta \sum_{k=1}^{N-1} \log |\lambda_{N}-\lambda_{k}| - N\frac{\beta}{4}\lambda_{N}^{2}} \mathrm{d}\mathbb{P}'_{N-1}(\mathrm{d}\lambda_{1},\ldots,\lambda_{N-1}).$$
Show that for any $\varepsilon > 0$ and $x > 2$ we have

Show that for any $\varepsilon > 0$ and x > 2 we have

$$\lim_{\varepsilon \to 0} \liminf_{N \to \infty} \frac{1}{N} \log \mathbb{P}_N(x - \varepsilon < \lambda_N < x + \varepsilon) \ge -I(x).$$

- (v) Conclude the proof of the large deviations principle for λ_N .
- (vi) Give (with no proof) a large deviations principle for the distribution of $(\lambda_{N-k}, \ldots, \lambda_N)$, where $k \ge 1$ is fixed.

Exercise 1. Fluctuations for the Ginibre ensemble. Consider the joint distribution of eigenvalues from the Ginibre ensemble,

$$\mathbb{P}(\mathrm{d}\boldsymbol{z}) = \frac{1}{Z_N} \prod_{1 \le i < j \le N} |z_i - z_j|^2 \prod_{i=1}^N e^{-N|z_i|^2} \mathrm{d}\mathrm{A}(z_i)$$

where dA is the Lebesgue measure on \mathbb{C} . Let \mathscr{C} be a smooth Jordan curve, with interior A, finite length $\ell(\mathscr{C})$, strictly included in the unit disk $\{|z| < 1\}$. Let $X_{\mathscr{C}} = \chi(A) - \mathbb{E}(\chi(A))$ where $\chi = \sum_{i=1}^{N} \delta_{z_i}$. By mimicking the method from Problem 1, prove the weak convergence

$$\frac{X_{\mathscr{C}}}{\ell(\mathscr{C})^{1/2}N^{1/4}} \to \mathscr{N}(0,c)$$

as $N \to \infty$, with some c independent of \mathscr{C} . What about joint convergence of $(X_{\mathscr{C}_1}, \ldots, X_{\mathscr{C}_n})$ where all Jordan curves $\mathscr{C}_1, \ldots, \mathscr{C}_n$ satisfy the above assumptions?

Exercise 2. The semicircle law for band matrices. Let H_N be a symmetric matrix with $H_N(i, j)$ a standard Bernoulli random variable when $|i - j| \le W/2$ or $||i - j| - N| \le W/2$, 0 otherwise. All entries are independent, up to the symmetry constraint. Assume $1 \ll W \leq N$. Prove that the empirical spectral measure of $W^{-1/2}H_N$ converges (in probability, say) to the semi-

circle distribution $\varrho(s) = (2\pi)^{-1}\sqrt{(4-s^2)_+}$.