Random Matrix Theory, homework 3, due December 22nd.

Exercise 1. Eigenvalues dynamics for covariance matrices. Let $M = M(t)$ be a $N \times N$ random matrix with $(M_{i,j}(t))_{t\geq 0}$ a real-valued, standard Brownian motion, and denote $H(t) = M(t)^{\mathrm{T}} M(t)$. Assume that $M(0)$ is such that $H(0)$ has N distinct eigenvalues $\lambda_1(0) > \cdots > \lambda_N(0) > 0$. Prove that the process $(\lambda(t))_{t\geq0}$ satisfies

$$
d\lambda_i(t) = 2\sqrt{\lambda_i(t)}dB_i(t) + Ndt + \sum_{k \neq i} \frac{\lambda_i(t) + \lambda_k(t)}{\lambda_i(t) - \lambda_k(t)}dt, \quad 1 \leq i \leq N,
$$

where the B_i 's are independent, standard Brownian motions. As a first step you can provide a formal derivation of the above result. As a second step you can prove that almost surely, a process satisfying this SDE has non-colliding particles.

Exercise 2. Non-collision for arbitrary driving noise. Consider the stochastic differential equation

$$
dx_i(t) = \frac{db_i(t)}{\sqrt{2N}} + \frac{1}{2N} \sum_{j \neq i} \frac{1}{x_i(t) - x_j(t)} dt, \quad 1 \leq |i| \leq N,
$$

where $0 < x_1(0) < \cdots < x_N(0)$, $x_{-i}(0) = -x_i(0)$, $(i \geq 1)$, $(b_i)_{1 \leq i \leq N}$ is a collection of continuous martingales, and $b_{-i}(t) = -b_i(t)$, $(i \geq 1)$. Note that the drift above includes a repulsive term between x_i and x_{-i} , equal to $\frac{1}{2N} \frac{1}{2x_i}$.

Assume that $\frac{d\langle b_i \rangle_t}{dt} \leq 1$ for any $i \geq 1, t \geq 0$. Prove existence and strong uniqueness for the above stochastic differential equation.

Exercise 3. Andreiev's identity, Kostlan's theorem.

- (i) On a measured space (E, \mathcal{E}, μ) , prove that for any functions $(\phi_i, \psi_i)_{i=1}^N \in L_2(\mu)^{2N}$, 1 N! Z $\int_{E^N} \det \left(\phi_i(\lambda_j) \right) \ \det \left(\psi_i(\lambda_j) \right) \ \mu(\mathrm{d}\lambda_1) \ldots \mu(\mathrm{d}\lambda_N) = \det \left(f_{i,j} \right) \quad \text{where } f_{i,j} = \int_{E^N} \mathrm{d}\phi_j(\lambda_j) \ \mathrm{d}\phi_j(\lambda_j)$ $\int_E \phi_i(\lambda) \psi_j(\lambda) \mu(\mathrm{d}\lambda).$
- (ii) Let $E = \mathbb{C}$, m the Lebesgue measure on E, $g \in L_2(\mu)$, with $\mu(\mathrm{d}\lambda) = \frac{N}{\pi} e^{-N|\lambda|^2} m(\mathrm{d}\lambda)$, and $\{\lambda_1, \ldots, \lambda_N\}$ be the eigenvalues from the complex Ginibre ensemble (with the standard normalization for a limiting circular law on D). Prove that

$$
\mathbb{E}\left(\prod_{k=1}^N g(\lambda_k)\right) = N^{\frac{N(N-1)}{2}} \det(f_{i,j})_{i,j=1}^N \quad \text{where } f_{i,j} = \frac{1}{(j-1)!} \int \lambda^{i-1} \bar{\lambda}^{j-1} g(\lambda) \mu(\mathrm{d}\lambda).
$$

(iii) Prove that the set $N\{|\lambda_1|^2,\ldots,|\lambda_N|^2\}$ is distributed as $\{\gamma_1,\ldots,\gamma_N\}$, a set of (unordered) independent Gamma variables of parameters $1, 2, \ldots, N$.

Exercise 4. Moment matching. Let X be a real-valued random variable with mean zero, variance 1. To simplify, we assume that X takes values in [−10, 10]. Prove that for any $\gamma < 10^{-10}$ there exists a random variable Y_{γ} , valued in [−100, 100], such that

$$
Z_{\gamma}:=\sqrt{1-\gamma}Y_{\gamma}+\sqrt{\gamma}G
$$

and X have the same moments of order $1, 2, 3$, and

$$
|\mathbb{E}[Z_{\gamma}^4 - X^4]| \le 10^{10}\gamma.
$$

Here G is a standard Gaussian random variable, independent of Y_{γ} .