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We establish a Brownian extension to Selberg’s central limit theorem for the Riemann zeta function.
This implies various limiting distributions for ζ, including an analogue of the reflection principle for the
maximum of the Brownian motion: as T diverges, for any u > 0 we have
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1 Introduction

1.1 Statistics on ζ. Selberg’s central limit theorem [17] states that for τ is chosen uniformly at random
from [0, T ],

1√
log log T

log ζ
(1
2
+ iτ

) law−→ NC (1.1)

as T → +∞, where NC is a standard complex Gaussian random variable, i.e. with independent normal real
and imaginary parts of variance 1

2 . A simple proof for log |ζ| can be found in [16].
This theorem was the first major result on the statistical behaviour of ζ around the critical line; since

then, many advances in probabilistic number theory involve new statistics for ζ. A prominent example is
Montgomery’s pair correlation [11], which conjecturally identifies the local spacings between high zeros of
Riemann zeta function with the scaling limit of random matrices from the Gaussian unitary ensemble.

More recently, the Fyodorov-Hiary-Keating conjecture [6, 7] proposed to extend this analogy to extreme
values statistics, through precise estimates for the maximum of the Riemann zeta function over short intervals
on the critical line. In particular, these papers conjectured that, if τ ∈ [T, 2T ] is chosen uniformly at random,

max
|h|⩽1

|ζ(1
2
+ iτ + ih)| ≍ log T

(log log T )
3
4

(1.2)

meaning that the ratio between the two sides is tight as T → ∞. After initial progress in [1, 9, 13], these
estimates on this ratio and its universal tail asymptotics were proved in [2, 3].

One natural question we consider in this paper is about the maximum of ζ over horizontal intervals. Our
main result is to control the behaviour of ζ in intervals of the form [ 12 + iτ, 1

2 + η + iτ ] by exhibiting a form
of functional tightness. This - for example - will allow us to show that for large T

1√
log log T

max
σ⩾ 1

2

log |ζ(σ + iτ)| law−→ |N (0,
1

2
)|, (1.3)
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where, again, τ ∈ [0, T ] is chosen uniformly at random. In particular, while the maximum (1.2) over vertical
short intervals exhibits a subtle, larger scaling than (1.1), the size order for the maximum over horizontal
intervals agrees with the normalization in Selberg’s central limit theorem, but the limiting random variable
is the absolute value of a Gaussian instead of a Gaussian, mirroring the reflection principle for the Brownian
motion.

1.2 Main result. Our main statement is as follows.

Theorem 1.1. Let T > 10 an τ be a uniform random variable on [0, T ]. Define

Z(T ) :
[0, 1] −→ C

α 7−→ 1√
log log T

log ζ( 12 +
1

(log T )α
+ iτ).

Then, as T → ∞, Z(T ) converges in law, for the topology of uniform convergence in C0([0, 1],C), to a
standard complex Brownian motion B, i.e. B = 1√

2
(B1 + iB2) where B1 and B2 are independent, standard

real Brownian motions.

The above convergence means that for any F : C0 → R a bounded functional which is continuous for the
L∞([0, 1]) norm, we have

E[F (Z(T ))] −→
T→+∞

E[F (B)]. (1.4)

Remark 1.2. The theorem above is stated for α ⩽ 1 because the process doesn’t exhibit any interesting
behaviour beyond this point: if we wish to consider α ∈ [0,∞), the limit process would follow the law of

B̃α =

{
Bα if α ⩽ 1,

B1 if α ⩾ 1.
(1.5)

Even in this setting (α ∈ [0,∞)) we have convergence in distribution of the sequence of functions in
C0([0,∞),C) (for the topology of uniform convergence). The proof is the same, except some minor changes
to the proof of Theorem 2.3.

Theorem 1.1 implies that for any 0 ⩽ α1, . . . , αn ⩽ 1 the joint limit distribution of (Z(T )(αi))1⩽i⩽n is
that of a Gaussian vector (with an appropriate correlation structure, described in Theorem 2.1). However,
this finite-dimensional limit is already well-understood: Our proof of Theorem 2.1 is only a repurposing of
the methods from [4]. Our main contribution is instead the fact that the sequence of random functions
(Z(T ))T⩾0 is tight, which is not a priori obvious and is necessary to deduce corollaries such as (1.3).

Finally, we note that for random unitary matrices, there is an analogous result to the finite dimensional
convergence, Theorem 2.1, also shown in [4]. One might wonder whether we can also generalise this to a
functional convergence towards Brownian motion, similarly to Theorem 1.1. More specifically, if Un is a
random, Haar-distributed, n× n unitary matrix,, the relevant analogue of Z(T ) to consider would be

Z(n) :
[0, 1] −→ C

α 7−→ 1√
log n

log det(exp(n−α)In − Un).

It seems likely that this process converges in distribution to a standard, complex Brownian motion as n → ∞.

1.3 Consequences. Convergence in law to Brownian motion gives a few corollaries regarding the global
behaviour of the Riemann zeta function in the critical strip; to the author’s knowledge, these corollaries are
novel. Similar statements hold if we replace log |ζ| with Im log ζ.

Corollary 1.3 (Reflection principle). The convergence (1.3) holds.

Proof. It follows from Remark 1.2, and the reflection principle for Brownian motion (see [14, Proposition
III.3.7]), that

sup
σ∈[

1
2 ,

3
2 ]

1√
log log T

log |ζ(1
2
+ σ + iτ)| −→

law
|N (0,

1

2
)|. (1.6)

Furthermore, if σ ⩾ 3/2, |ζ(σ + iτ)| ⩽ 2; this proves the corollary.
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The next result gives the distribution of the logarithmic measure of σ such that log |ζ(σ + iτ)| ⩾ 0.

Corollary 1.4 (Arcsine law). For T > 10, define the probability measure µT over [
1

log T
, 1] by

dµT (σ) =
1

σ log log T
dσ. (1.7)

Then, if τ ∈ [0, T ] is chosen uniformly, the distribution of

MT = µT {σ ∈ [
1

log T
, 1], |ζ(1

2
+ σ + iτ)| ⩾ 1}

converges weakly to an arcsine law i.e. P(MT ⩽ y) −→
T→∞

2

π
arcsin

√
y.

Proof. Applying the arcsine law for Brownian motion (see [14, Theorem VI.2.7]), we know that

M̃T = λ{α ∈ [0, 1], log |ζ(1
2
+

1

(log T )α
+ iτ)| ⩾ 0} (1.8)

converges weakly to an arcsine law. However, if α ∈ [0, 1] is chosen uniformly,
1

(log T )α
follows the law µT ;

the corollary follows.

A third consequence of our theorem is a result quantifying how abnormally large the maximum around
1
2 + iτ (approached horizontally) becomes.

Corollary 1.5 (Law of the iterated logarithm). If α ∈ [0, 1], set

St(α) = sup
0⩽β⩽α

∣∣∣∣log |ζ(12 +
1

(log T )β
+ it)|

∣∣∣∣ . (1.9)

Then, if τ ∈ [0, T ] is chosen uniformly at random, the sequence of functions

(
Sτ√

log log T

)
T⩾10

converges

in distribution to a random function S verifying

lim
α→0

S(α)√
α log log 1

α

= 1 a.s. (1.10)

This originates from the so-called iterated logarithm law for Brownian motion, which follows from a
similar law for random walks [10]. The usual statement is that, for a real Wiener process (Xt)t⩾0,

lim sup
t→+∞

|Xt|√
2t log log t

= 1 a.s. (1.11)

but, noting that (t 7→ tX 1
t
) is also a Wiener process, an analogous law follows for t → 0.

Proof. Let F : C0([0, 1],R) → R be a continuous bounded functional. The functional

G :

C0([0, 1],C) −→ R

Z 7−→ F

((
α 7→ sup

0⩽β⩽α
ReZ(β)

))
is also continuous and bounded. Thus,

E
[
F

(
1√

log log T
Sτ

)]
= E[G(Z(T ))] −→

T→+∞
E[G(B)] = E[F (S)], (1.12)

where B is a complex Brownian motion and S(α) = sup
0⩽β⩽α

ReBβ .

Then, (1.10) follows from the aforementioned iterated logarithm law for Brownian motion.
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Another corollary of our functional convergence is the limiting occupation measure for log |ζ|, on hori-

zontal lines. More precisely, for t > 0, let L
(T )
t be the local time of ReZ(T ) i.e. the (almost everywhere)

unique function Lt : R → R+ such that, for any function φ ∈ C0(R,R),∫ t

0

φ(ReZ(T )(u))du =

∫
R
φ(v)Lt(v)dv. (1.13)

Corollary 1.6. The process L
(T )
t converges weakly to the local time L

(∞)
t of Brownian motion, in the

following sense: if f, φ ∈ C0
b (R) are bounded continuous functions,

E[f(⟨L(T )
t , φ⟩)] −→

T→∞
E[f(⟨L(∞)

t , φ⟩)]. (1.14)

Proof. Let φ ∈ C0
b (R). Then

E
[
f

(∫
R
φ(v)L

(T )
t (v)dv

)]
= E

[
f

(∫ t

0

φ ◦ ReZ(T )(u)du

)]
−→
T→∞

E
[
f

(∫ t

0

φ(Bu)du

)]
= E

[
f

(∫
R
φ(v)L

(∞)
t (v)dv

)]
,

as desired.

This result grants us insight into the distribution of values of log ζ. For instance:

Corollary 1.7. Let N > 0, ε > 0. Then, there exists T0(N, ε) > 0 such that, if T ⩾ T0 and τ ∈ [0, T ] is
uniformly chosen,

P(log |ζ(σ + iτ)| changes sign at least N times for σ ∈ [ 12 ,
3
2 ]) ⩾ 1− ε. (1.15)

Proof. By monotone convergence, it is sufficient to show that, for any ε > 0, η > 0, there exists T0(η, ε) such
that, for T ⩾ T0,

P(ReZ(T ) changes sign over [0, η]) ⩾ 1− ε. (1.16)

To show this, consider φ(x) = x+ ∧ 1. By Portmanteau’s theorem,

lim inf
T→∞

P(⟨L(T )
η , φ⟩ > 0) ⩾ P(⟨L(∞)

η , φ⟩ > 0) = 1 (1.17)

and so, for large enough T , ReZ(T ) > 0 at some point in [0, η] with probability at least 1 − ε. The same
argument applied to φ(x) = x− ∧ 1 shows (1.16), and the corollary.

1.4 Notations and acknowledgments We use the convention f ≪ g to mean f = O(g); if the implied
constant depends upon another variable ε, we shall write f ≪ε g. x ∧ y denotes the minimum of x and y,
and x+ = max(x, 0) is the positive part of x. log ζ is defined in the usual way (see [17] for example).

The author wishes to thank Paul Bourgade for his many helpful comments.

2 Overview of the proof of Theorem 1.1

We must prove two points in order to establish convergence in distribution: (i) convergence of finite-
dimensional distributions; (ii) tightness of our process Z(T ).

2.1 Convergence of finite-dimensional distributions. In this section, we prove the following theorem,
as a first step towards establishing Theorem 1.1. For complex variables, we define Cov(X,Y ) = E[X̄Y ] −
E[X̄]E[Y ]

Theorem 2.1. Let 0 ⩽ α1, . . . , αn: for T > 0, if τ is a uniform random variable on [0, T ],

1√
log log T

(
log ζ(

1

2
+

1

(log T )α1
+ iτ), . . . , log ζ(

1

2
+

1

(log T )αn
+ iτ)

)
(2.1)

converges in law to a complex centred Gaussian vector (Y1, . . . , Yn), with covariances

Cov(Yi, Yj) = 1 ∧ αi ∧ αj . (2.2)
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In order to achieve this, we will make use of the following lemma from [4]:

Lemma 2.2. Let ap,T be complex numbers indexed by prime p and T ⩾ 1. Assume that:

(i) supp |ap,T | −→
T→∞

0;

(ii)
∑

p |ap,T |2 −→
T→∞

a2 for some a ⩾ 0;

(iii) there exists (mT ) such that logmT = o(log T ) and∑
p>mT

|ap,T |2(1 +
p

T
) −→
T→∞

0. (2.3)

Then, if τ ∈ [0, T ] is a uniform random variable,
∑

p ap,T p
−iτ converges in distribution to a complex normal

variable N (0, a2).

In order to make use of this, we shall replace log ζ with a related Dirichlet series. Indeed, it is known
that, if σ ⩾ 1

2 ,

log ζ(σ + iτ)−
∑
p⩽T

1

pσ+iτ
(2.4)

is bounded in L2, and thus converges in distribution to 0 once divided by
√
log log T . Here, we shall take

σi =
1

2
+

1

(log T )αi
for 1 ⩽ i ⩽ n. (2.5)

Using the Cramér–Wold method, in order to show Theorem 2.1, it is thus sufficient to show that for all
µ1, . . . , µn ∈ C,

1√
log log T

n∑
l=1

µl log ζ(σl + iτ)
law−→ N (0, a2) (2.6)

i.e.
1√

log log T

n∑
l=1

µl

∑
p⩽T

1

pσl+iτ

law−→ N (0, a2)

where a2 =
∑

1⩽i,j⩽n

µiµj(αi ∧ αj). Now, setting

ap,T =
1p⩽T√
log log T

n∑
l=1

1

pσl
(2.7)

we simply need to check that the prerequisites of Lemma 2.2 hold. (i) is clearly true; (iii) holds if we set

mT = T
1

log log T . Finally, in order to check (ii), we just need to show∑
p⩽T

1

pσi+σj
∼ (αi ∧ αj) log log T for any 1 ⩽ i, j ⩽ n. (2.8)

This is shown in Lemma 3.3 of [4], and we skip the proof here: it is similar to the proof of our Lemma 3.3
later on. All prerequisites having been checked, Theorem 2.1 is therefore proven.

2.2 The tightness criterion. Before proving the tightness of Z(T ), let us state a criterion which will be
crucial to the proof. It is a modified version of a statement by Prokhorov [15, Theorem 2.1], which itself is
adapted from a criterion by Kolmogorov for the continuity of stochastic processes.

Theorem 2.3 (Kolmogorov tightness criterion). Let {Z(T ), T ⩾ 0} be a sequence of stochastic processes on
C([0, 1],R). Assume that, for some T0 ⩾ 0,

• {Z(T )(x0), T ⩾ T0} is tight for some x0;
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• For any ε > 0, there exist events AT
ε of probability at least 1− ε, and constants A ⩾ 0, B > 1 such that

for all T ⩾ T0 and 0 ⩽ a, b ⩽ 1,

E[|Z(T )(a)− Z(T )(b)|A1AT
ε
] ≪ε |a− b|B . (2.9)

Then the sequence {Z(T ), T ⩾ 0} is tight.

The original statement of this theorem does not include 1AT
ε
; this is a relatively minor change, but we

nevertheless include a proof for completeness.

Proof. Setting ε > 0, we must show that for large enough T , Z(T ) stays in a compact subset of C0([0, 1]) with
probability at least 1− ε. Replacing ε by 2ε, we may replace Z(T ) by Z(T )

1AT
ε
, and so our main hypothesis

becomes

∀x, y ∈ [0, 1],E[|Z(T )(x)− Z(T )(y)|A] ⩽ C|x− y|B . (2.10)

If 0 < γ < 1, we are going to bound the γ-Hölder norm of Z(T ):

∥φ∥γ = |φ(x0)|+ sup
0⩽x,y⩽1

|φ(x)− φ(y)|
|x− y|γ

. (2.11)

In fact, it is sufficient to bound its restriction to dyadic intervals

∥φ∥Dγ = |φ(x0)|+ sup
n⩾1

0⩽k⩽2n−1

|φ(k+1
2n )− φ( k

2n )|
( 1
2n )

γ
(2.12)

since ∥φ∥γ ⩽ 2(1− 2−γ)∥φ∥Dγ . Accordingly, if n > 0, 0 ⩽ k < 2n, and T > T0,M > 0,

P(|Z(T )(
k + 1

2n
)− Z(T )(

k

2n
)| > M

2γn
) ⩽

2Aγn

MA
E[|Z(T )(

k + 1

2n
)− Z(T )(

k

2n
)|A] ⩽ 1

MA
2(Aγ−B)n. (2.13)

Furthermore, we can find M ′ > 0 such that P(|Z(T )(x0)| > M ′) < ε
2 . Thus, if we take γ <

B − 1

A
, we may

sum over all dyadic numbers:

P(∥Z(T )∥Dγ > M +M ′) ⩽
ε

2
+
∑
k,n

P(|Z(T )(
k + 1

2n
)− Z(T )(

k

2n
)| > M

2γn
) ⩽

1

MA

21+Aγ−B

1− 21+Aγ−B
+

ε

2
. (2.14)

For large enough M , this is at most ε. Thus, we have shown that ∥Z(T )∥γ is bounded by a certain constant
with probability at least 1− ε: since the unit ball for ∥ · ∥γ is compact, this concludes our proof.

If we want to extend Theorem 1.1 to α ∈ [0,∞) (as in Remark 1.2), the proof above is not quite sufficient
because the unit ball for ∥ · ∥γ is no longer compact. We need some criteria to ensure well-behavedness at
infinity, and the following conditions are sufficient:

• almost surely, Z(T )(α) converges to a (random) limit l as α → ∞;

• for T > 0 and ε > 0, |Z(T )(α) − l|1AT
ε
⩽ a(ε, T ) −→

α→∞
0 for some deterministic a(ε, T ). This means

that |Z(T )(α)− l|1AT
ε
converges to 0 uniformly in the underlying random seed ω.

These criteria, and ∥ · ∥γ-boundedness, are enough to guarantee tightness (by a more general Arzelà-Ascoli
theorem). In our specific case regarding the Riemann zeta function,

• the first criterion is clearly fulfilled;

• equation (4.17) later on guarantees that the second condition is verified.

This means that we effectively have convergence in law over [0,∞).
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2.3 Structure of the proof of tightness. Theorem 2.3 allows us to transform a tightness problem,
which would require some pretty strong uniform controls on log ζ, into a moments calculation for which we
have much better tools. In our case, we shall take A = 4 and B = 2, owing to the roughly 1

2 -Holderian
behaviour of Brownian motion.

Are the prerequisites of Theorem 2.3 verified by the process Z(T )? The first one clearly is (taking for
instance x0 = 0) but the second one is much less obvious, and the purpose of the rest of this paper will be
to prove that it holds. Specifically, from now on, we will set ε > 0, and 0 ⩽ a < b ⩽ 1: for large enough
T > 0, our aim is to construct an adequate AT

ε (independent of a, b) such that

E[|Z(T )(a)− Z(T )(b)|41AT
ε
] ⩽ Cε|a− b|2. (2.15)

We will also set

σ1 =
1

2
+

1

(log T )a
and σ2 =

1

2
+

1

(log T )b
(2.16)

so that (2.15) becomes

E[| log ζ(σ1 + iτ)− log ζ(σ2 + iτ)|41AT
ε
] ⩽ Cε(b− a)2(log log T )2. (2.17)

In order to show this, we will proceed by approximating log ζ by a well-chosen Dirichlet sum. This allows us
to effectively compute moments by expanding out the sum. Specifically, we will make use of the following
decomposition from Selberg’s original paper on the CLT [17]: for x > 1, we may write

ζ ′

ζ
(s) = −

∑
n⩽x3

Λx(n)

ns
+ ex(s) (2.18)

where

Λx(n) =



Λ(n) if n ⩽ x

Λ(n)
log2 x3

n − 2 log2 x2

n

log2 n
if x ⩽ n ⩽ x2

Λ(n)
log2 x3

n

log2 n
if x2 ⩽ n ⩽ x3

.

Here, we will be taking x = T
1
20 , although all of the following results are valid for x = T c with small enough

c. As a result,

E[|Z(T )(a)− Z(T )(b)|41AT
ε
] ⩽

32

(log log T )2
E


∣∣∣∣∣∣
∑
n⩽x3

Λx(n)

nσ1+iτ log n
−
∑
n⩽x3

Λx(n)

nσ2+iτ log n

∣∣∣∣∣∣
4


+
32

(log log T )2
E

[∣∣∣∣∫ σ1

σ2

ex(σ + iτ)dσ

∣∣∣∣4 1AT
ε

]
.

(2.19)

The first term can be bounded quite effectively; this will be done in Section 4. To bound the second term,
we will rely upon methods developed by Selberg in [17]; this will be done in Section 5. In particular, the
specific choice of Λx was made in order to be able to apply said methods.

With both terms bounded, we will mostly have proven our main theorem. However, setting σc =
1

2
+

40 log 1
ε

log T
, it turns out that this method breaks down when σ2 ⩽ σc. This case is not too complicated,

and is handled separately at the end of the paper.

3 Moments of Dirichlet sums

As announced, in this section we will show the following proposition.

Proposition 3.1. Here and for the rest of this paper, we will take x = T
1
20 . Then,

E


∣∣∣∣∣∣
∑
n⩽x3

Λx(n)

nσ1+iτ log n
−
∑
n⩽x3

Λx(n)

nσ2+iτ log n

∣∣∣∣∣∣
4
≪ (b− a)2(log log T )2. (3.1)
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In order to prove Proposition 3.1, we shall use the two following technical lemmas:

Lemma 3.2. Let φ : N → R+ satisfy the following conditions:

• φ(n) = 0 if n is not a pk for some prime p and k > 0;

• if p is prime and i ⩾ 1, φ(pi) ⩽ φ(p)

Then, setting x = T
1
20 ,

E


∣∣∣∣∣∣
∑
n⩽x3

φ(n)

n
1
2+iτ

∣∣∣∣∣∣
4
≪

 ∑
p⩽x3 prime

φ(p)2

p

2

, (3.2)

with the implied constant being independent of φ.

Lemma 3.3. Let 0 ⩽ α ⩽ β ⩽ 1, and let η, η′ be functions of T such that log η ∼ −α log log T and
log η′ ∼ −β log log T . Then, ∑

p⩽x3 prime

1

p1+η
− 1

p1+η′ ≪ (β − α) log log T. (3.3)

These lemmas are very similar to existing results in the literature, but those are not quite sufficient for
our purposes due to the dependence on σ, σ′.

Assuming these lemmas, we may set

φ(n) =
Λx(n)

log n
(n−(σ1− 1

2 ) − n−(σ2− 1
2 )) (3.4)

and, applying Lemma 3.2,

E


∣∣∣∣∣∣
∑
n⩽x3

Λx(n)

nσ1+iτ log n
−
∑
n⩽x3

Λx(n)

nσ2+iτ log n

∣∣∣∣∣∣
4
≪

 ∑
p⩽x3 prime

(p−σ1 − p−σ2)2

2

(3.5)

=

∑
p⩽x3

(
1

p2σ1
− 1

pσ1+σ2

)
−
(

1

pσ1+σ2
− 1

p2σ2

)2

.

Applying Lemma 3.3, this shows Proposition 3.1.

Proof of Lemma 3.2. We may write

E


∣∣∣∣∣∣
∑
n⩽x3

φ(n)

n
1
2+iτ

∣∣∣∣∣∣
4
 = E


∣∣∣∣∣∣
∑

m,n⩽x3

φ(m)φ(n)√
mn

e−iτ log(mn)

∣∣∣∣∣∣
2
 = E


∣∣∣∣∣∣∣
∑
l⩾1

e−iτ log l
∑

m,n⩽x3

mn=l

φ(m)φ(n)√
mn

∣∣∣∣∣∣∣
2 (3.6)

in order to apply the following identity by Montgomery-Vaughan.

Lemma 3.4. Let λ1, . . . , λN ∈ R, α1, . . . , αN and set δ = min
i,j⩽N

|λi − λj |. Then,

∫ T

0

∣∣∣∣∣
N∑

k=1

αke
iλkt

∣∣∣∣∣
2

dt = (T +O(δ−1))

N∑
k=1

|αk|2. (3.7)

A proof of this can be found in [12]. In our case, we obtain

E


∣∣∣∣∣∣
∑
n⩽x3

φ(n)

n
1
2+iτ

∣∣∣∣∣∣
4
≪

∑
l⩾1

1

l

∣∣∣∣∣∣∣
∑

m,n⩽x3

mn=l

φ(m)φ(n)

∣∣∣∣∣∣∣
2

def
=
∑
l⩾1

1

l
Φx(l)

2 ⩽
∑

p<q prime

∑
1⩽i,j

Φx(p
iqj)2

piqj
+
∑
i⩾2

∑
p prime

Φx(p
i)2

pi
.

(3.8)
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We separate these two terms in order to effectively bound Φx in each case. To bound the first term, expanding
out Φx,

∑
p<q prime

∑
1⩽i,j

Φx(p
iqj)2

piqj
⩽

∑
p,q⩽x3 prime

∑
1⩽i,j

φ(pi)2φ(qj)2

piqj
⩽ 2

∑
p,q⩽x3 prime

φ(p)2φ(q)2

pq
⩽ 2

 ∑
p⩽x3 prime

φ(p)2

p

2

.

(3.9)
We handle the second term in the same manner:

∑
i⩾2

∑
p prime

Φx(p
i)2

pi
=
∑
i⩾2

∑
p prime

∑
k+l=i,k′+l′=i

φ(pk)φ(pk
′
)φ(pl)φ(pl

′
)

pi
⩽

∑
p prime

φ(p)4
∑
i⩾2

i2

pi

≪
∑

p prime

φ(p)4

p2
⩽

 ∑
p⩽x3 prime

φ(p)2

p

2

.

This concludes the proof of Lemma 3.2.

We now just have to prove our other technical result.

Proof of Lemma 3.3. First, note that by taking the derivative of α 7→ 1

(log T )α
, we obtain

η − η′ ≪ η(β − α) log log T. (3.10)

We shall be using equation (3.10) throughout the rest of this paper. Let us rewrite:∑
p⩽x3

1

p1+η
=
∑
n⩽x3

π(n)− π(n− 1)

n1+η
=
∑
n⩽x3

π(n)(
1

n1+η
− 1

(n+ 1)1+η
) +

π(N)

N1+η
. (3.11)

where N = ⌊x3⌋, and π denotes the prime-counting function. We now wish to approximate this sum by its
associated integral. Specifically, setting

Ix(η) =

∫ x3

1

π(u)(
1

u1+η
− 1

(u+ 1)1+η
)du, (3.12)

we will split up our problem:

∑
p⩽x3

1

p1+η
−
∑
p⩽x3

1

p1+η′ =

Ix(η
′)−

∑
p⩽x3

1

p1+η′

−

Ix(η)−
∑
p⩽x3

1

p1+η

+ (Ix(η)− Ix(η
′)). (3.13)

Now,

d

dη

Ix(η)−
∑
p⩽x3

1

p1+η


= (1 + η)

(∫ x3

1

π(u)(− log u

u1+η
+

log⌊u⌋
⌊u⌋1+η

+
log(u+ 1)

(u+ 1)1+η
− log⌊u+ 1⌋

⌊u+ 1⌋1+η
)du− π(N) logN

N1+η

)

≪
∫ x3

1

π(u)
log u

u3+η
du+

π(N) logN

N1+η
≪ 1

(3.14)

since π(u) ∼ u

log u
. As a result,

Ix(η)−
∑
p⩽x3

1

p1+η

−

Ix(η
′)−

∑
p⩽x3

1

p1+η′

≪ (η − η′) ≪ (β − α) log log T (3.15)
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by (3.10). As a result, we now just need to control Ix(η)− Ix(η
′):

Ix(η)− Ix(η
′) ≪

∫ x3

2

u

log u

(
1

u1+η
− 1

(u+ 1)1+η
− 1

u1+η′ +
1

(u+ 1)1+η′

)
du

=

∫ x3

2

(
η

u1+η log u
− η′

u1+η′ log u

)
du+

∫ x3

2

ε(u, η)− ε(u, η′)du

(3.16)

with ε(u, η) =
1

uη log u
− u

(u+ 1)1+η log u
− η

u1+η log u
. Since

d

dη
ε(u, η) ≪ 1

u2+η
,∫ x3

2

(ε(u, η)− ε(u, η′))du ≪ η − η′ ≪ (β − α) log log T. (3.17)

In order to bound the main integral, we may now set v = η log u (resp. v = η′ log u):∫ x3

2

(
η

u1+η log u
− η′

u1+η′ log u

)
du = η

∫ 3η log x

η log 2

dv

vev
− η′

∫ 3η′ log x

η′ log 2

dv

vev

= (η − η′)

∫ 3η′ log x

η log 2

dv

vev
+ η

∫ 3η log x

3η′ log x

dv

vev
− η′

∫ η log 2

η′ log 2

dv

vev

= I1 + I2 − I3.

(3.18)

It is quite clear that I2 ≪ I3; meanwhile,

I3 = η′
∫ η log 2

η′ log 2

1

v
(1 +O(1))dv ≪ η′ log

η

η′
+ (η − η′) ≪ (β − α) log log T. (3.19)

Finally,

I1 ≪ (η − η′)

(∫ 1

η log 2

dv

v
+

∫ 3η′ log x

1

e−vdv

)
≪ η(1 + log η)(β − α) log log T ≪ (β − α)(log log T ), (3.20)

which concludes the proof.

4 The contribution of zeta zeroes

As a reminder, we have set σc =
1

2
+

40 log 1
ε

log T
. We still have two points to handle in order to apply Theorem

2.3: (i) bounding the second term in (2.19); (ii) handling the case σ2 ⩽ σc.

In the interests of legibility, we will define (and work with) η1 = σ1 −
1

2
, η2 = σ2 −

1

2
, ηc = σc −

1

2
, etc.

4.1 Bounding the error ex. Recall that we set

ex(s) = log ζ(s) +
∑
n⩽x3

Λx(n)

ns
. (4.1)

We wish to show that

E[
∣∣∣∣∫ σ1

σ2

ex(σ + iτ)dσ

∣∣∣∣4 1AT
ε
] ≪ε (b− a)2(log log T )2 (4.2)

when σc ⩽ σ2 ⩽ σ1. Our main tool for showing this will be the following identity from [17, equation (4.9)]

Lemma 4.1. Let t ⩾ 2 and 2 ⩽ x ⩽ t2.
Furthermore, set

σx,t =
1

2
+ 2max

ρ
(β,

2

log x
)

10



where ρ =
1

2
+ β + iγ ranges over all zeroes of ζ such that |t− γ| ⩽ x3|β|

log x
. Then, if σ ⩾ σx,t,

ex(σ + it) ≪ x− 1
2 (σ−

1
2 )

∣∣∣∣∣∣
∑
n⩽x3

Λx(n)

nσx,t+it

∣∣∣∣∣∣+ log t

 . (4.3)

Applying this lemma, if σx,t ⩽ σ2 ⩽ σ1 and T ⩽ t ⩽ 2T ,

∣∣∣∣∫ σ1

σ2

ex(σ + it)dσ

∣∣∣∣≪
∣∣∣∣∣∣
∑
n⩽x3

Λx(n)

nσx,t+it

∣∣∣∣∣∣+ log T

4

min(
x− η1

2

log x
, (σ1 − σ2)x

− η2
2 ). (4.4)

This is a good start, but how do we go from the condition σ2 ⩾ σx,t to σ2 ⩾ σc? For this, we need to
show that σx,t is usually smaller than σc: we will then cut out the region where σx,t ⩾ σc by choosing AT

ε

adequately. This is the object of the following lemma.

Lemma 4.2. Set

Yε =
⋃
ρ

[γ − ε
x4|β|

log T
, γ + ε

x4|β|

log T
] (4.5)

where ρ = 1
2 + β + iγ ranges over non-trivial zeroes of ζ, then:

• the measure of Yε ∩ [0, T ] is O(εT );

• if t ∈ [0, T ] \ Yε, σx,t ⩽ σc.

Proof. We may ignore the zeroes to the left of the critical axis, since ζ has reflectional symmetry with regards
to the critical axis.

Set, for η ⩾ 0,

N (η, T ) = #{ρ =
1

2
+ β + iγ such that ζ(ρ) = 0, β ⩾ η, 0 ⩽ γ ⩽ T}. (4.6)

It is known (see [17]) that N (η, T ) ≪ T log T exp(− 1
4η log T ). Thus, setting N = N (0, T ), we may label

1
2 + β1 ⩾ 1

2 + β2 ⩾ . . . ⩾ 1
2 + βN the abscissae of zeroes of ζ with ordinates in [0, T ]. Now:

|Yε ∩ [0, T ]| ⩽
N−1∑
i=1

2ε
x4βi

log T
=

2

5
ε

N−1∑
i=1

N (
1

2
+ βi, T )

∫ βi

βi+1

x4βdβ + 2εN
x4βN

log T

⩽ ε

∫ 1

0

x4βN (
1

2
+ β, T )dβ + 2εN

x4βN

log T
.

(4.7)

Since βN ≪ 1

log T
and N ≪ T log T , 2εN

x4βN

log T
= O(εT ). Meanwhile,

∫ 1

0

x4βN (
1

2
+ β, T )dβ ≪ T log T

∫ 1

0

T− β
20 dβ ≪ T. (4.8)

This shows the first part of Lemma 4.2. For the second point, simply note that, if t ∈ [0, T ] \ Yε, and

ρ = 1
2 + β + iγ is a zero of ζ such that |t− γ| ⩽ x3β

log x ,

ε
x4β

log x
⩽ |t− γ| ⩽ x3β

log x
so xβ ⩽

1

ε
, and β ⩽

log 1
ε

log x
. (4.9)

Taking the maximum over all applicable ρ, we see that σx,t ⩽
1

2
+

40 log 1
ε

log T
. The lemma is thus shown.
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This means that we can set AT
ε = (τ /∈ Yε) and apply Lemma 4.1 to tackle (4.2):

E[
∣∣∣∣∫ σ1

σ2

ex(σ + iτ)dσ

∣∣∣∣4 1AT
ε
] ≪

E


∣∣∣∣∣∣
∑
n⩽x3

Λx(n)

nσx,τ+iτ

∣∣∣∣∣∣
4
+ (log T )4

min(
x−2η1

(log x)4
, (η1 − η2)

4x−2η2). (4.10)

To conclude, we will use the following proposition, whose proof will be given shortly:

Proposition 4.3. We have

E


∣∣∣∣∣∣
∑
n⩽x3

Λx(n)

nσx,τ+iτ

∣∣∣∣∣∣
4

1t/∈Yε

≪ε (log T )
4.

Assuming Proposition 4.3, we can consider two cases. First, if b − a ⩽
1

log log T
, then

η1
η2

≪ 1 and,

applying (3.10),

E[
∫ σ1

σ2

|ex(σ + iτ)|4dσ1AT
ε
] ≪ε (log T )

4η41(b− a)4(log log T )4x−2η2

≪ (b− a)4(η2 log T )
4e−

2
13η2 log T (log log T )4 ≪ (b− a)2(log log T )2.

If b− a ⩾
1

log log T
, then

E[
∫ σ1

σ2

|ex(σ + iτ)|4dσ1AT
ε
] ≪ε

(
log T

log x

)4

x−2η2 ≪ 1 ≪ (b− a)2(log log T )2. (4.11)

We therefore just need to show Proposition 4.3.

Proof. Set η0 =
1

log T
: then,

E


∣∣∣∣∣∣
∑
n⩽x3

Λx(n)

nσx,τ+iτ

∣∣∣∣∣∣
4

1AT
ε

 ⩽ 8E


∣∣∣∣∣∣
∑
n⩽x3

Λx(n)

n
1
2+η0+iτ

∣∣∣∣∣∣
4
+ 8E


∣∣∣∣∣∣
∑
n⩽x3

Λx(n)

n
1
2+iτ

(
n−η0 − n−ηx,τ

)∣∣∣∣∣∣
4

1AT
ε

 . (4.12)

However, applying Lemma 3.2 with φ(n) = Λx(n)n
−η0 :

E


∣∣∣∣∣∣
∑
n⩽x3

Λx(n)

n
1
2+η0+iτ

∣∣∣∣∣∣
4
≪

 ∑
p⩽x3 prime

(log p)2

p1+2η0

2

≪

(∫ A

2

(log t)1−2η0

t1+2η0
dt

)2

(4.13)

for some A ∼ x3

3 log x
. Setting u = η0 log t and changing variables,

∫ A

2

(log t)1−2η0

t1+2η0
dt =

1

η2−2η0

0

∫ η0 logA

η0 log 2

u1−2η0

e2u
du ≪ η−2

0 . (4.14)

Meanwhile, if we look at the second term in (4.12),

E


∣∣∣∣∣∣
∑
n⩽x3

Λx(n)

n
1
2+iτ

(
n−η0 − n−ηx,τ

)∣∣∣∣∣∣
4

1AT
ε

≪ E


∣∣∣∣∣∣
∑
n⩽x3

Λx(n)

n
1
2+η0+iτ

((ηx,τ − η0) log n)

∣∣∣∣∣∣
4

1AT
ε


≪
(
log

20

ε

)4

E


∣∣∣∣∣∣
∑
n⩽x3

Λx(n)

n
1
2+η0+iτ

∣∣∣∣∣∣
4
≪ε η

−4
0 = (log T )4.

This gives the expected result.
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4.2 Towards the critical line. As mentioned earlier, the case σ2 ⩽ σc needs to be handled separately.
Specifically, it still remains to be shown that:

Proposition 4.4. If σ2 ⩽ σ1 ⩽ σc,

E[| log ζ(σ1 + iτ)− log ζ(σ2 + iτ)|41AT
ε
] ≪ε (b− a)2(log log T )2. (4.15)

The case where σ2 ⩽ σc ⩽ σ1 follows easily, applying the ”triangular inequality” |a+ b|4 ≪ |a|4 + |b|4.
Also note that the argument below also applies in the more general case where, potentially, a, b > 1 (the

case where b−a is much larger than (log log T )−1 is easily handled). This allows us, as mentioned in Section
3.2, to apply the tightness criterion over [0,∞).

Proof. Note that, if σ ⩽ σc, and T ⩽ t ⩽ 2T ,

|ζ
′

ζ
(σ + it)− ζ ′

ζ
(σc + it)| = |

∑
ρ=β+iγ

1

η − β + i(t− γ)
− 1

ηc − β + i(t− γ)
+O(log T )|

⩽
∑
ρ

ηc − η

|η − β + i(t− γ)||ηc − β + i(t− γ)|
+O(log T )

⩽ (ηc − η)
∑
ρ

1

(t− γ)2
+O(log T ).

(4.16)

Now,

E

[∑
ρ

1

(t− γ)2
1t/∈Yε

]
≪ε (log T )

2.

As a result, we can increase the size of Yε in such a way that the measure of Yε ∩ [T, 2T ] remains O(εT ),
and if t ∈ [T, 2T ] \ Yε,∑

ρ

1

(t− γ)2
≪ε (log T )

2 and so |ζ
′

ζ
(σ + it)− ζ ′

ζ
(σc + it)| ≪ε log T. (4.17)

Consequently,

E[| log ζ(σ1 + iτ)− log ζ(σ2 + iτ)|41AT
ε
] ≪ E

[∣∣∣∣∫ σ1

σ2

ζ ′

ζ
(σ + iτ)dσ

∣∣∣∣4 1AT
ε

]

≪ε (σ1 − σ2)
4((log T )4 + E[|ζ

′

ζ
(σc + iτ)|41AT

ε
])

≪ε (η1 log T )
4(b− a)4(log log T )4

≪ε (b− a)2(log log T )2

(4.18)

given that b− a ≪ε
1

log log T
.
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