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1. Introduction

Following the groundbreaking paper [2] in which strong probabilistic bounds on short in-
tervals of the critical line were established for the Riemann zeta function, we extend the
main theorem there to L functions corresponding to Dirichlet characters, obtaining both
upper and lower bounds for individual L functions on random intervals of constant length
on the critical line. Our results do not take into account dependence on the modulus q of
the character which is treated as a constant, but a more careful analysis of the method of
proof should allow for results in which this dependence is made explicit.

In [2], Arguin, Belius, Bourgade, Radziwill and Soundararajan showed that for any ε > 0,
as T → ∞ the following holds:

1

T
meas

{
T ≤ t ≤ 2T : (1− ε) log log T < max

|t−u|≤1
log

∣∣ζ (1
2
+ iu

)∣∣ < (1 + ε) log log T
}
→ 1.

Let now q ≥ 3 and χ a fixed non-principal character on (Z/qZ)∗. Hence χ is completely
multiplicative, periodic with period q, χ(n) = 0, (n, q) > 1 and |χ(n)| = 1, (n, q) = 1, while
χ non-principal implies that

∑q
n=1 χ(n) = 0.

As usual we define

L(s) =
∞∑
n=1

χ(n)

ns
= Πp prime(1−

χ(p)

ps
)−1, Re s > 1

the L function associated with χ. The fact that
∑q

n=1 χ(n) = 0 implies that L originally
defined and analytic for Re s > 1 where the series above is absolutely convergent, extends
analytically to Re s > 0 with conditional convergence on 0 < Re s ≤ 1. It is well known
that L extends to an entire function which satisfies a functional equation relating L(s) with
L(1 − s) but since our results concern only the critical strip 0 < Re s < 1 and actually the
critical line Re s = 1

2
and its immediate neighborhood, we will not be needing that.

Our main result is:
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Theorem 1.1. For any ε > 0, as T → ∞ we have

1

T
meas

{
T ≤ t ≤ 2T : (1− ε) log log T < max

|t−u|≤1
log

∣∣L (
1
2
+ iu

)∣∣ < (1 + ε) log log T
}
→ 1.

The proof will follow closely the proof of the result above in [2], using corresponding re-
sults for the second and fourth momentum of L,L′ as well as for various approximations
of L,L′ by Dirichlet polynomials and related functions that are well known and proven in
literature for the Riemann zeta function. We will sketch proofs of these results as we proceed.

First let’s note that we can reduce the proof of Theorem 1.1 to the case of χ primitive
character, which means that χ is not induced by a character χ1 with modulus q1|q, q1 < q,
where χ would be induced by χ1 if χ(n) = χ1(n) when (n, q) = 1.

In the induced case one clearly has that

Lχ(s) = Πp|q(1−
χ1(p)

ps
)Lχ1(s)

for all s by analytic continuation from the Euler product for Re s > 1. Since there are finitely

many primes p|q and for each of them we have A ≤ |(1 − χ1(p)
ps

)| ≤ B for Re s ≥ δ > 0 and

some constants A,B > 0, it follows that

A1 < log
∣∣Lχ

(
1
2
+ it

)∣∣− log
∣∣Lχ1

(
1
2
+ it

)∣∣ < A2

for some constants A1, A2 so the result for χ1 implies the result for χ. So from now on, we
assume χ primitive.

1.1. About the proof. Theorem 1.1 asserts two statements: first an upper bound that for
typical t ∈ [T, 2T ] one has max|t−u|≤1 log |L(12 + iu)| ≤ (1 + ε) log log T , and second a lower
bound that this maximum is also typically ≥ (1− ε) log log T . The upper bound in Theorem
1.1 admits a short proof based on a Sobolev type inequality and second moment estimates
for L(s) and L′(s). This argument is given in section 2, and indeed in Proposition 2.1 we
establish the stronger assertion that for any function V = V (T ) tending to infinity with T
we have

1

T
meas

{
max

|t−u|≤1
log

∣∣L (
1
2
+ iu

)∣∣ < log(V log T )
}
→ 1.

The lower bound in Theorem 1.1 requires substantially more work, and forms the bulk
of the paper. In Section 3, we reduce the proof of Theorem 1.1 to two propositions. The
first step, Proposition 3.1, transforms the problem to the study of Dirichlet polynomials
supported on the primes below X = exp((log T )1−κ) for a suitable κ = κ(ε) > 0. The sec-
ond step, Proposition 3.2, establishes lower bounds for the Dirichlet polynomials over primes.

Acknowledgements. The author thanks Professor P. Bourgade for suggesting the prob-
lem and for all the advice that led to this paper.
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2. Proof of the upper bound

The upper bound implicit in our theorem will be a simple consequence of estimates for the
second moment of L functions and their derivatives, together with a Sobolev-type inequality.
Let f (possibly complex valued) be continuously differentiable on [−1, 1]. For any u ∈ [−1, 1],
note that

f(u)2 =
f(1)2 + f(−1)2

2
+

∫ u

−1

f ′(v)f(v)dv −
∫ 1

u

f ′(v)f(v)dv,

so that using the triangle inequality we get the Sobolev inequality:

(1) max
u∈[−1,1]

|f(u)|2 ≤ |f(1)|2 + |f(−1)|2

2
+

∫ 1

−1

|f ′(v)f(v)|dv.

Proposition 2.1. Let V = V (T ) be any function that tends to infinity as T → ∞. Then

P
(

max
|t−u|≤1

|L(1/2 + iu)| > V log T
)
= O(1/V 2) = o(1),

where we recall that t is sampled uniformly in the range [T, 2T ].

Proof. Chebyshev’s inequality implies that

(2) P
(

max
|t−u|≤1

|L(1/2 + iu)| > V log T
)
≤ 1

V 2(log T )2
E
[
max

|t−u|≤1
|L(1/2 + iu)|2

]
.

Applying (1) with f(v) = L(1/2 + it+ iv), we obtain

max
|t−u|≤1

|L(1/2+iu)|2 ≪ |L(1
2
+i(t+1))|2+|L(1

2
+i(t−1))|2+

∫ 1

−1

|L′(1
2
+i(t+v))L(1

2
+i(t+v))|dv,

Integrating the above on [T, 2T ] and switching the double integral gives:

E
[
max

|t−u|≤1
|L(1/2 + iu)|2

]
≪ 1

T

∫ 2T+1

T−1

(
|L(1

2
+ it)|2 + |L′(1

2
+ it)L(1

2
+ it)|

)
dt.

Now we use bounds for the second momentum of L,L′ which follow similarly to the ones for
the Riemann zeta function and for which we will sketch a proof below.

(3)

∫ 2T+1

T−1

|L(1
2
+ it)|2dt ≪ T log T, and

∫ 2T+1

T−1

|L′(1
2
+ it)|2dt ≪ T (log T )3.

Using these estimates and Cauchy-Schwarz inequality, we conclude that

E
[
max

|t−u|≤1
|L(1/2 + iu)|2

]
≪ (log T )2,

which, in view of (2), yields the proposition. □

Proof of Second Momentum Bounds for L,L’

First we prove (3) using approximations (proven below) of L,L′ by a Dirichlet polynomial
similar to Theorem 4.11.1 in [11]. So we assume:

(4) L(s) =
∑
n≤qx

χ(n)

ns
+O(x−σ)
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uniformly for s = σ + it, σ ≥ δ > 0, |t| < 2πx
C

for a given constant C > 1.

Now in (4), we let σ = 1
2
, δ = 1

4
, C = 2π

3
, x = T .

Letting Q(s) =
∑

n≤qT
χ(n)
ns , we see that L(1

2
+ it) = Q(1

2
+ it) + R where R > 0 and

R = O(T− 1
2 ) for all t ∈ [T − 1, 2T + 1] since our choice of C gives us |t| < 3T . Hence:

(5)

∫ 2T+1

T−1

|L(1
2
+ it)|2dt ≤

∫ 2T+1

T−1

|Q(
1

2
+ it)|2dt+ 2R

∫ 2T+1

T−1

|Q(
1

2
+ it)|dt+ (T + 2)R2

By Cauchy-Schwarz:

2R

∫ 2T+1

T−1

|Q(
1

2
+ it)|dt ≤ 2R

√
T + 2

(∫ 2T+1

T−1

|Q(
1

2
+ it)|2dt

) 1
2

≪
(∫ 2T+1

T−1

|Q(
1

2
+ it)|2dt

) 1
2

while (T + 2)R2 ≪ 1

So to prove our estimate for L, it is enough to prove
∫ 2T+1

T−1
|Q(1

2
+ it)|2dt = O(T log T )

Since |Q|2 = QQ̄ and |χ(n)| = 0 or 1, multiplying and integrating term by term, we get:∫ 2T+1

T−1

|Q(
1

2
+ it)|2dt ≪ (T + 2)

∑
n≤qT

1

n
+

∑
1≤n<k≤qT

1

log(k/n)
√
nk

But (T +2)
∑

n≤qT
1
n
≪ (T +2) log(qT ) ≪ T log T . We split the second sum into k

n
≥ 3

2
and

k
n
< 3

2

Now the subsum when k
n
≥ 3

2
is at most:

1

log 3
2

∑
1≤n<k≤qT

1√
nk

≪ (
∑

1≤n≤qT

1√
n
)2 ≪ (

√
qT )2 ≪ T

.
For the second subsum, when k

n
< 3

2
, we split it further into sums where k − n = c for some

constant 1 ≤ c < qT . Since k
n
< 3

2
, c

n
< 1

2
so log( k

n
) = log(1 + c

n
) ≫ c

n
.

So for a fixed c, the corresponding subsum is at most qT
c
since

√
n
k
≤ 1. Thus the full subsum

over all c′s for k
n
≥ 3

2
is at most: qT

∑
1≤c<qT

1
c
≪ qT log T ≪ T log T .

So the estimate is proved.

For L′, instead of (4), we have:

(6) L′(s) =
∑
n≤qx

− log(n)χ(n)

ns
+O(x−σ log x)

uniformly for s = σ + it, σ ≥ δ > 0, |t| < 2πx
C

for a given constant C > 1 with the proof
following by applying Cauchy to (4).

With the same choices as above and a similar procedure with Q1(s) =
∑

n≤qT
−χ(n) log(n)

ns ,
it follows that:
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∫ 2T+1

T−1

|Q1(
1

2
+ it)|2dt ≪ (T + 2)

∑
n≤qT

(log n)2

n
+

∑
1≤n<k≤qT

log(q) log(k)

log(k/n)
√
nk

≪

≪ (log qT )2((T + 2)
∑
n≤qT

1

n
+

∑
1≤n<k≤qT

1

log(k/n)
√
nk

) ≪ T (log T )3

Hence, ∫ 2T+1

T−1

|L′(
1

2
+ it)|2dt ≪ T (log T )3

as the error is negligible as above. This completes the proof of bounds for the second mo-
ments of L and L′.

Note that by using the more precise mean value theorem for Dirichlet polynomials, The-
orem 5.2 in [5] ∫ 2T

T

|
∑
n≤N

ann
it|2 = T

∑
n≤N

|an|2 +O(
∑
n≤N

n|an|2)

we can actually obtain asymptotics for the second momentum of both L,L′. We also note
that here we do not need that χ is primitive, but only non-principal, though we will need
primitivity in the lower bound part.

Sketch of Proof of (4), (6)

Define the Hurwitz zeta function ζ(s, a) =
∑∞

n=0
1

(n+a)s
for 0 < a ≤ 1 and Re s > 1 where

ζ(s, 1) is the Riemann zeta function. It follows that

(7) L(s) = q−s

q∑
r=1

χ(r)ζ(s,
r

q
)

Applying Euler’s summation formula with f(t) = (t+ a)−s we get for Re s > 1:

(8) ζ(s, a) =
N∑

n=0

1

(n+ a)s
+

(N + a)1−s

s− 1
− s

∫ ∞

N

x− ⌊x⌋
(x+ a)s+1

dx

Since 0 ≤ x − ⌊x⌋ < 1, it follows that the integral is absolutely and uniformly convergent
for Re s ≥ δ > 0. So the above equation is valid for Re s > 0 and can be used to define the
analytic continuation of ζ(s, a) up to Re s > 0.
Similarly to the proof of Theorem 4.11.1 in [11], we have (with |t| < 2πx

C
, C > 1):

∑
x<n≤N

1

(n+ a)s
=

∫ N

x

du

(u+ a)s
+O(x−σ) =

(N + a)1−s − x1−s

1− s
+O(x−σ)

Hence ζ(s, a) =
∑

n≤x
1

(n+a)s
− (x+a)1−s

1−s
+O(x−σ) +O( |s|+1|

Nσ ).
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Taking N to infinity, we get:

(9) ζ(s, a) =
∑
n≤x

1

(n+ a)s
− x1−s

1− s
+O(x−σ)

because (x+a)1−s−x1−s

1−s
= O(x−σ).

Applying (9) for each a = 1
q
, ..., q−1

q
, 1 and plugging into (7), we get (4) noting that∑q

k=1 χ(k) = 0.

For proving (6), we note that (4) gives us (under the corresponding assumptions on x, σ, t)
that

L(s) =
∑
n≤qx

χ(n)

ns
+ f(s)

where f is analytic and f(s) = O(x−σ). Applying Cauchy to a small circle around s of radius
1

log x
we get that

f ′(s) = O(x−σ log x

∫ 2π

0

x− cos θ
log xdθ) = O(x−σ log x)

and we are done by differentiating (4) term by term.

3. Plan of the proof of the lower bound

Here we assume χ is a primitive character with modulus q. Given ε > 0, we will fix a
large integer K = K(ε), and divide the primes below

(10) X = exp((log T )1−
1
K )

into K − 1 ranges depending on their size, as follows. Take J0 = [2, exp((log T )
1
K )], and for

1 ≤ j ≤ K − 2 set

(11) Jj = (exp((log T )
j
K ), exp((log T )

j+1
K )].

For each 0 ≤ j ≤ K − 2, we define the Dirichlet polynomial

(12) Pj(u) = Re
∑
p∈Jj

χ(p)

pσ0+iu
,

where

(13) σ0 =
1

2
+

(log T )
3

2K

log T
.

By taking T large enough we can assume that all primes p|q are in J0.

Using the prime number theorem (see for example Theorem 6.9 of [7]) and partial sum-
mation it follows that for some constant c > 0, and any σ = 1

2
+ δ with δ > 0

(14)
∑

x≤p≤y

1

p2σ
=

∫ y

x

1

u2σ log u
du+O(e−c

√
log x) = log

log y

log x
+O(δ log y + e−c

√
log x).
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Since (σ0 − 1/2)× log(sup JK−3) = (log T )−
1

2K it follows that, for all 1 ≤ j ≤ K − 3,

(15)
∑
p∈Jj

1

p2σ0
=

1

K
log log T +O((log T )−

1
2K ),

and the sums above for j = 1 . . . K − 3 are all on primes that do not divide q by our
assumption above.

Proposition 3.1. Let ε > 0 be given, and let K = K(ε) be a suitably large integer. Then

P
(

max
|t−u|≤1

log |L(1
2
+ iu)| > (1− 2ε) log log T

)
≥ P

(
max

|t−u|≤ 1
4

K−3∑
j=1

Pj(u) > (1− ε) log log T
)
+ o(1).

Proposition 3.2. Let K > 3 be a natural number, and 0 < λ < 1 be a real number. Then

(16) P
(

max
|t−u|≤ 1

4

(
min

1≤j≤K−3
Pj(u)

)
>

λ

K
log log T

)
= 1 + o(1).

Once Propositions 3.1, 3.2 are proven, Theorem 1.1 follows immediately:

Proof of Theorem 1.1. If Proposition 3.2 holds, then

max
|u−t|≤ 1

4

K−3∑
j=1

Pj(u) > λ
(
1− 3

K

)
log log T.

Taking λ sufficiently close to 1, and K large enough, the lower bound of the theorem now
follows from Proposition 3.1. □

Before proceeding to the proofs of the proposition, we record some results on mean values
of Dirichlet polynomials which will be repeatedly used below and are proven in the main
paper [2].

Lemma 3.3. For any complex numbers a(n) and b(n), and N ≤ T we have∫ 2T

T

( ∑
m≤N

a(m)m−it
)( ∑

n≤N

b(n)nit
)
dt = T

∑
n≤N

a(n)b(n)+O
(
N logN

∑
n≤N

(|a(n)|2+|b(n)|2)
)
.

Lemma 3.4. Let x ≥ 2 be a real number, and suppose that for primes p ≤ x, a(p) and b(p)
are complex numbers with |a(p)| and |b(p)| both at most 1. Then for any natural number k
we have

E
[(1

2

∑
p≤x

(a(p)p−it + b(p)pit)
)k]

= ∂k
z

(∏
p≤x

I0(
√
a(p)b(p)z)

)∣∣∣
z=0

+O
(x2k

T

)
where I0(z) =

∑
n≥0 z

2n/(22n(n!)2) denotes the Bessel function. In particular, the expression

is O
(
x2k/T

)
for odd k.
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Lemma 3.5. Let x ≥ 2 be a real number, and suppose σ ≥ 1
2
. Let k be a natural number

such that xk ≤ T (log T )−1. Then, for any sequence of complex numbers a(p) defined on the
primes p below x,

1

T

∫ 2T

T

∣∣∣∑
p≤x

a(p)

pσ+it

∣∣∣2kdt ≪ k!
(∑

p≤x

|a(p)|2

p2σ

)k

.

4. Proof of Proposition 3.1

4.1. Step 1. We divide the proof of the proposition into three parts, the first of which
bounds the maximum of the L function over intervals of the critical line in terms of the
maximum over intervals lying slightly to the right of the critical line.

Lemma 4.1. Let ε > 0 be given, and suppose 1
2
≤ σ ≤ 1

2
+(log T )−1/2−ε. Then, for any real

number V ≥ 2,

P
(

max
|t−u|≤1

|L (1/2 + iu) | > V
)
≥ P

(
max

|t−u|≤ 1
4

|L(σ + iu)| > 2V
)
+ o(1).

Proof. From (4) we recall that for σ ≥ 1
2

(17) L(σ + it) =
∑
n≤qT

χ(n)

nσ+it
+O(T− 1

2 ).

Using knowledge of the Fourier transform of the function e−|x|, we may write

1

nσ− 1
2

=
1

π

∫ ∞

−∞
n−iv (σ − 1/2)

(σ − 1/2)2 + v2
dv =

1

π

∫ T/2

−T/2

n−iv (σ − 1/2)

(σ − 1/2)2 + v2
dv +O(T−1).

Thus by multiplying both sides by χ(n)

n
1
2+it

and adding n = 1, ..., qT we see that

(18) L(σ + it) =
1

π

∫ T/2

−T/2

L (1/2 + i(t+ v))
σ − 1/2

(σ − 1/2)2 + v2
dv +O(T− 1

2 ).

Consider t ∈ [T, 2T ] such that max|v|≤ 1
4
|L (σ + i(t+ v)) | > 2V but max|v|<1 |L(1/2+ i(t+

v))| ≤ V ; we must show that the measure of the set of such points t is o(T ). If t is such a
point, then denote by v⋆ = v⋆(t) the v ∈ [−1

4
, 1
4
] where the maximum of |L(σ + i(t + v))| is

attained. Applying (18) to the point σ + i(t+ v⋆) we obtain

2V < |L(σ + i(t+ v⋆))| ≤ 1

π

∫ T/2

−T/2

|L (1/2 + i(t+ v⋆ + v)) | (σ − 1/2)

(σ − 1/2)2 + v2
dv +O(T− 1

2 ).

Since |L(1/2 + iu)| ≤ V for |t − u| ≤ 1 (by assumption), the portion of the integral above
with |v| ≤ 3

4
is less than V . Therefore it follows that

V +O(T− 1
2 ) ≤ 1

π

∫
3
4
≤|v|≤T

2

|L (1/2 + i(t+ v⋆ + v)) | (σ − 1/2)

(σ − 1/2)2 + v2
dv.

Using the Cauchy-Schwarz inequality, we deduce that for such t,( V

(σ − 1/2)

)2

≪
(∫

3
4
≤|v|≤T

2

|L(1/2 + i(t+ v⋆ + v))|dv
v2

)2

≪
∫

1
2
≤|v|≤T

2

|L(1/2 + i(t+ v))|2dv
v2

.
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Therefore, by Chebyshev’s inequality, the measure of the set of such points t ∈ [T, 2T ] is

≪
((σ − 1/2)

V

)2
∫ 2T

T

∫
1
2
≤|v|≤T

2

|L(1/2+i(t+v))|2dv
v2

dt ≪
((σ − 1/2)

V

)2
∫ 5T/2

T/2

|L(1/2+it)|2dt,

which, by (3) and the assumption on σ, is

≪ (σ − 1/2)2T log T = o(T ).

□

4.2. Step 2. The second part of the attack will consist of showing that on the σ0 line, one
can typically invert L(σ0 + it) and replace it by a suitable Dirichlet polynomial. We define

(19) M(s) =
∑
n

µ(n)a(n)χ(n)

ns
,

where the factor a(n) equals 1 if all primes factors of n are smaller than X and Ω(n) ≤
100K log log T =: ν, while a(n) = 0 otherwise. Recall that µ denotes the Möbius function,
Ω(n) counts the number of prime factors of n (with multiplicity), and X was defined in (10).

Lemma 4.2. With the above notation∫ 2T

T

|L(σ0 + it)M(σ0 + it)− 1|2dt = O
( T

(log T )100

)
.

Proof. From its definition, a(n) = 0 unless n ≤ Xν < T ε (ε > 0 is a fixed arbitrarily small
constant), and therefore estimating trivially one has M(σ0 + it) ≪ T ε. Combining this with
(17), we see that∫ 2T

T

L(σ0 + it)M(σ0 + it)dt =

∫ 2T

T

∑
n≤qT

χ(n)

nσ0+it

∑
m

µ(m)a(m)χ(m)

mσ0+it
dt+O(T

1
2
+ε).

Carrying out the integral over t and using χ(1) = 1, |χ(n)| ≤ 1, this is

T +O
( ∑

n≤qT,m≤Xν

mn>1

1

(mn)σ0

)
+O(T

1
2
+ε) = T +O(T

1
2
+ε).

Thus, expanding out the square in the desired integral, we see that it equals

(20)

∫ 2T

T

|L(σ0 + it)M(σ0 + it)|2dt− T +O(T
1
2
+ε).

To estimate the second moment in (20), we invoke a restricted L version of the classical
Selberg lemma for which we will sketch a proof at the end of the section using Selberg’s
method from [9] (one can find [9] as 15 in Selberg’s Collected Papers, Vol 1, [10]).

Proposition 4.3. For any fixed ε > 0 and 1 ≤ h, k ≤ T ε, (h, q) = (k, q) = 1 and 1/2 < σ ≤
1, we have ∫ 2T

T

χ(h)χ̄(k)
(h
k

)it

|L (σ + it)|2 dt =
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∫ 2T

T

(L0,q(2σ)
((h, k)2

hk

)σ

+
( qt

2π

)1−2σ

L0,q(2− 2σ)
((h, k)2

hk

)1−σ

dt+O(T 1−σ/2+4ε)

Where L0,q(σ + it) = ζ(σ + it)
∏

p|q(1 −
1
ps
) is the L function corresponding to the triv-

ial/principal character of modulus q.

Using this result, we may write∫ 2T

T

|L(σ0 + it)M(σ0 + it)|2dt =
∑
h,k

µ(h)a(h)µ(k)a(k)

hσ0kσ0

∫ 2T

T

χ(h)χ̄(k)
(h
k

)it

|L(σ0 + it)|2dt

= S1 + S2 + E,(21)

say, with

(22) S1 = TL0,q(2σ0)
∑

(h,q)=1,(k,q)=1

µ(h)a(h)µ(k)a(k)

(hk)σ0

((h, k)2
hk

)σ0

,

(23) S2 = L0,q(2− 2σ0)
(∫ 2T

T

( qt

2π

)1−2σ0

dt
) ∑

(h,q)=1,(k,q)=1

µ(h)a(h)µ(k)a(k)

(hk)σ0

((h, k)2
hk

)1−σ0

,

and

(24) E = O
(
T

3
4
+4ε

∑
h,k≤T ε

1

(hk)σ0

)
= O(T

3
4
+5ε).

Now consider the quantity S1. Here the sum is over all h and k whose prime factors do
not divide q, are below X, and with Ω(h) and Ω(k) below ν. If we drop the Ω condition,
then the contribution to S1 would be (upon considering whether a prime p divides neither h
nor k, or divides exactly one of h or k, or divides both h and k)

TL0,q(2σ0)
∑

(h,q)=1,(k,q)=1
p|hk =⇒ p≤X

µ(h)µ(k)

(hk)σ0

((h, k)2
hk

)σ0

= TL0,q(2σ0)
∏

p≤X,(p,q)=1

(
1− 1

p2σ0
− 1

p2σ0
+

1

p2σ0

)

= Tζ(2σ0)
∏
p≤X

(
1− 1

p2σ0

)
.(25)

since X is large, q ≤ X hence all the primes p|q satisfy p ≤ X too.

The difference between S1 and (25) comes from the terms with either Ω(h) or Ω(k) being
larger than ν, and these terms give a contribution bounded by (assuming that Ω(h) is larger
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than ν)

≪ TL0,q(2σ0)
∑
h,k

Ω(h)>ν
p|hk =⇒ p≤X

|µ(h)µ(k)|
(hk)σ0

((h, k)2
hk

)σ0

≪ TL0,q(2σ0)e
−ν

∑
h,k

p|hk =⇒ p≤X

|µ(h)µ(k)|
(hk)σ0

((h, k)2
hk

)σ0

eΩ(h),

since eΩ(h)−ν ≥ 1 when Ω(h) ≥ ν, and is non-negative for other terms. As L0,q(2σ0) ≈ ζ(2σ0),
the sum over h and k may now be expressed as a product over the primes below X, yielding

Tζ(2σ0)e
−ν

∏
p≤X

(
1 +

e

p2σ0
+

1

p2σ0
+

e

p2σ0

)
≪ T (log T )e−ν

∏
p≤X

(
1 +

7

p

)
≪ T

(log T )100
.

Thus

S1 = Tζ(2σ0)
∏
p≤X

(
1− 1

p2σ0

)
+O

( T

(log T )100

)
= T

∏
p>X

(
1− 1

p2σ0

)−1

+O
( T

(log T )100

)
.

Recalling the definitions of σ0 and X, we find (σ0 − 1/2) logX = (log T )
1

2K , and so∑
p>X

log
(
1− 1

p2σ0

)−1

≪
∑
p>X

1

p2σ0
≪ X−(σ0−1/2)

∑
p>X

1

pσ0+1/2
≪ (log T )−100,

which enables us to conclude that S1 = T +O(T/(log T )100).
Arguing similarly, we see that

S2 ∼ L0,q(2−2σ0)
(∫ 2T

T

( qt

2π

)1−2σ0

dt
) ∏

p≤X,(p,q)=1

(
1−2

p
+

1

p2σ0

)
≪ T 2−2σ0 log T ≪ T

(log T )100
.

Inserting the evaluation of S1 with the estimates for S2 and E into (21), and then into (20),
we obtain the lemma. □

Lemma 4.2 ensures that for most t one has L(σ0 + it)M(σ0 + it) ≈ 1, and we next refine
this to ensure that for most t one has L(σ0 + iu)M(σ0 + iu) ≈ 1 for all u with |u− t| ≤ 1.

Lemma 4.4. For any ε > 0, we have

P
(

max
|t−u|≤1

|M(σ0 + iu)L(σ0 + iu)− 1| > ε
)
= o(1).

Proof. We deduce this from Lemma 4.2 and a Sobolev inequality argument. Note that by
(1), we have

max
|t−u|≤1

|LM(σ0 + iu)− 1|2 ≪ |LM(σ0 + i(t+ 1))− 1|2 + |LM(σ0 + i(t− 1))− 1|2

+

∫ t+1

t−1

|LM(σ0 + iv)− 1||(L′M + LM ′)(σ0 + iv)|dv.
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Ignoring the end cases t ∈ [T, T + 1] or t ∈ [2T − 1, 2T ], by Chebyshev’s inequality the
probability we want to bound is (using the above estimate)

≪ 1

T
+

1

ε2T

∫ 2T

T

(
|LM(σ0 + i(t+ 1))− 1|2 + |LM(σ0 + it)− 1||(L′M + LM ′)(σ0 + it)|

)
dt.

Applying the Cauchy-Schwarz inequality and Lemma 4.2 this is

≪ 1

ε2(log T )100
+

1

ε2(log T )50

( 1

T

∫ 2T

T

(
|L′M |2 + |LM ′|2

)
(σ0 + it)dt

) 1
2
.

We use the Cauchy-Schwarz inequality once again to bound that term by

≪
( 1

T

∫ 2T

T

(|L|4 + |L′|4)(σ0 + it)dt
) 1

4
( 1

T

∫ 2T

T

(|M |4 + |M ′|4)(σ0 + it)dt
) 1

4
,

Since M2,M ′2 are Dirichlet polynomials of length X2ν ≪η T
η for all η > 0 and coefficients

O(log2 T ) the mean value theorem for Dirichlet polynomials, Lemma 3.3 above, gives us that
the second term is ≪ log2 T .

Since we need only estimates and not asymptotics for the fourth momentum of L,L′, we
can use the method of proof for Theorem D in [4] to show that for 1/2 ≤ σ ≤ 1 we have
(uniformly in σ):

(26)

∫ 2T

T

|L(σ + it)|4dt ≪ T log4 T

(27)

∫ 2T

T

|L′(σ + it)|4dt ≪ T log8 T

For L the proof of Theorem D in [4] translates directly using the Approximate Functional
Equation for L, (32) below, since everything is done by direct majorization which works the
same for L as for ζ, while for L′ we use its Approximate Functional Equation, (40) below,
and we majorize all extra log n, log s terms by log T and the method of proof in [4] applies
then too. This completes the proof. □

Note: we believe that following carefully the methods of Conrey, [3], one can actually prove
asymptotics for the fourth momentum of L,L′ using the respective Approximate Functional
Equations below.

4.3. Step 3. The last stage in our proof involves connecting log |M(σ0 + it)| (for most t)
with (close relatives) of the Dirichlet polynomials over primes Pj(t). For 0 ≤ j ≤ K − 2,
define the Dirichlet polynomials

(28) Pj(t) =
∑
n∈Jj

Λ(n)χ(n)

nσ0+it log n
, and P̃j(t) =

∑
p∈Jj

χ(p)

pσ0+it
.

Note that Pj(t) is simply the real part of P̃j(t), and the difference between Pj and P̃j is only
in the prime powers; estimating the contribution of prime cubes and larger powers trivially
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we see that

(29) Q(t) =
K−2∑
j=0

(Pj(t)− P̃j(t)) =
1

2

∑
p≤

√
X

χ(p2)

p2σ0+2it
+O(1).

Our goal is to show that for most t one has max|t−u|≤1 |M(σ0 + iu)− exp(−
∑K−2

j=0 Pj(u))| is
small, and we begin with the following preliminary lemma.

Lemma 4.5. With notation as above,

P
(

max
|t−u|≤1

|Q(u)| ≥ log log log T
)
= o(1),

and
P
(

max
|t−u|≤1

max
0≤j≤K−2

|P̃j(u)| ≥ 10K− 1
2 log log T

)
= o(1).

The proof is identical to the proof of Lemma 4.4 in the main paper [2] since everything is
done by majorization and |χ(n)| ≤ 1.

We are ready to connect M(σ0 + it) with exp(−
∑K−3

j=0 Pj(t)) for most values of t.

Lemma 4.6. We have

P
(

max
|t−u|≤1

∣∣∣M(σ0 + iu)− exp
(
−

K−2∑
j=0

Pj(u)
)∣∣∣ > (log T )−2

)
= o(1) .

Proof. Recalling that ν = 100K log log T , we define the truncated exponential

(30) M(t) =
∑
k≤ν

(−1)k

k!

(K−2∑
j=0

Pj(t)
)k

.

By Lemma 4.5, we know that with probability 1 + o(1) (in t) one has

max
|t−u|≤1

∣∣∣K−2∑
j=0

Pj(u)
∣∣∣ ≤ max

|t−u|≤1

(
|Q(u)|+

K−2∑
j=0

|P̃j(u)|
)
≤ 10K log log T.

For such a typical t, one has

max
|u−t|≤1

∣∣∣M(u)− exp
(
−

K−2∑
j=0

Pj(u)
)∣∣∣ ≤ ∑

k>ν

1

k!
(10K log log T )k ≪ (log T )−100.

Therefore, the lemma would follow once we establish that

(31) P
(

max
|t−u|≤1

|M(σ0 + iu)−M(u)| > (log T )−3
)
= o(1) .

Since by definition

exp(−
∑

p|n =⇒ p≤X

Λ(n)χ(n)

nσ0+it log n
) = Πp≤X(1−

χ(p)

pσ0+it
)

the quantities M(σ0 + iu) and M(u) are almost identical, differing only in a small number
of terms. More precisely, if we write M(u) =

∑
n b(n)n

−σ0−iu, it follows that (i) |b(n)| ≤ 1
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always, (ii) b(n) = 0 unless n ≤ Xν is composed only of primes p below X with (p, q) = 1,
and (iii) b(n) = µ(n)a(n)χ(n) unless Ω(n) > ν, or if there is a prime p ≤ X, (p, q) = 1 such
that pk|n with pk > X. Therefore, an application of Lemma 3.3 gives

E[|M(σ0 + it)−M(t)|2] ≪
∑

p|n =⇒ p≤X
Ω(n)>ν

1

n
+
( ∑

p≤X
pk>X

1

pk

)( ∑
p|n =⇒ p≤X

1

n

)
.

The second term above is ≪ (logX)/
√
X ≪ (log T )−100. Since e(Ω(n)−ν)/2 is ≥ 1 when

Ω(n) > ν, and is positive for all other n, we may bound the first term above by

e−ν/2
∑

p|n =⇒ p≤X

eΩ(n)/2

n
≪ (log T )−50K

∏
p≤X

(
1 +

∞∑
j=1

ej/2

pj

)
≪ (log T )−50.

We conclude that

E[|M(σ0 + it)−M(t)|2] ≪ (log T )−50.

A simple application of Lemma 3.3 also shows that E[|M ′(σ0 + it)|2] and E[|M′(t)|2] are
≪ (log T )3. The estimate (31) follows as in Lemmas 4.5 and 4.6 by a successive application
of the Sobolev inequality, Chebyshev’s inequality and the Cauchy-Schwarz inequality, proving
the lemma. □

4.4. Finishing the proof of Proposition 3.1. From Lemma 4.1 we obtain for any V ≥ 2

P( max
|t−u|≤1

|L(1
2
+ iu)| ≥ V ) ≥ P( max

|t−u|≤ 1
4

|L(σ0 + iu)| ≥ 2V ) + o(1).

By Lemma 4.4 this quantity is

≥ P( max
|t−u|≤ 1

4

|M(σ0 + iu)|−1 ≥ 4V ) + o(1),

and by Lemma 4.6 the above is

≥ P
(

max
|t−u|≤ 1

4

K−2∑
j=0

Re Pj(u) ≥ log(8V )
)
+ o(1).

Invoking Lemma 4.5, we may replace RePj(u) by Pj(u) with the appropriate error, and also
discard the terms with j = 0 and j = K − 2: thus, the quantity above is

≥ P
(

max
|t−u|≤ 1

4

K−3∑
j=1

Pj(u) ≥ log(8V ) + log log log T + 20K− 1
2 log log T

)
+ o(1).

Taking V = (log T )1−2ε, the proposition follows.

Proof of Selberg Lemma for L Functions: Prop 4.3

Lemma 4.7. Approximate Functional Equation for the L Function
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For s = σ + it, A a positive constant, 0 < σ < 1, t > 100, 2πxy = t, x > A, y > A, χ a
primitive character of modulus q, and L = Lχ, we have

(32) L(s) =
∑
n≤qx

χ(n)

ns
+ c(s)

∑
n≤y

χ(n)

n1−s
+OA,q(x

−σ log t+ t
1
2
−σyσ−1 + y

1
2x− 1

2
−σ)

where

c(s) = χ(−1)Gχ(1)e
πi(1−s)/2Γ(1− s)

q−s

(2π)1−s

|c(s)| =
( qt

2π

)1/2−σ(
1 +O(1/t))

)
and Gχ(m) is the Gauss sum associated with χ,

Gχ(m) =

q∑
n=1

χ(n)e2πinm/q

Proof. Recall that χ primitive implies that Gχ(m) = χ(m)Gχ(1). Hence

(33)

q∑
n=1

χ(n)e−2πimn/q = χ(−1)

q∑
n=1

χ(−n)e−2πimn/q = χ(−1)χ(m)Gχ(1)

Let N much larger than t. From (17) we have

L(s) =
∑
n≤qN

χ(n)

ns
+O(N−σ) = q−s

q∑
h=1

χ(h)
∑
n≤N

1

((n+ h)/q)s
+O(N−σ)

Now for 0 < a ≤ 1, Lemma 4.10 from [11] shows that

(34)
∑

x<n≤N

1

(n+ a)s
=

∑
t

2π(N+a)
− 1

2
<m≤ t

2π(x+a)
+ 1

2

∫ N

x

e2πimu

(u+ a)s
du+O(x−σ log(t/x+ 2))

Since t
2π(N+a)

is small, the first integral is for m = 0 hence it is

(N + a)1−s − (x+ a)1−s

1− s

But
q∑

h=1

χ(h)
(N + h/q)1−s − (x+ h/q)1−s

1− s
= O(x−σ)

since
(x+ a)1−s − x1−s

1− s
= O(x−σ), and

q∑
h=1

χ(h) = 0

Now for 0 < σ < 1 and t positive,

(35)

∫ ∞

−a

e2πimu

(u+ a)s
du = e−2πima

∫ ∞

0

e2πimv

vs
dv = e−2πimaΓ(1− s)

eπi(1−s)/2

(2πm)1−s

which is well known and easy to prove with residues.
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Since m ≥ 1, m− t
2πu

≥ 3
4
, u ≥ N so∫ ∞

N

ei(2πmu−t log(u+a))du = O(1/m)

by the first derivative test for integrals (Lemma 4.2 in [11]) hence the upper tail of (35)
satisfies:

(36)

∫ ∞

N

e2πimu

(u+ a)s
du = O(N−σ/m)

We have

(37)

∫ x

−a

e2πimu

(u+ a)s
du = [

(u+ a)1−s

1− s
e2πimu]x−a −

2πim

1− s

∫ x

−a

(u+ a)1−se2πimudu

We now recall that in the sum of integrals in (34) we have m ≤ t
2π(x+a)

+ 1
2

If we restrict only to m ≤ t
2π(x+a)

− 1
2
we can again estimate the integral above by the first

derivative test for integrals since t/(2π(x+ a)−m ≥ 1/2 so the lower tail of (35) satisfies:

(38)

∫ x

−a

e2πimu

(u+ a)s
du = O(

x1−σ

t
) +O(

mx1−σ

t(m− t/(2π(x+ a))
)

For the unique t
2π(x+a)

− 1
2
< m ≤ t

2π(x+a)
+ 1

2
so m ≈ y we can use the second derivative

test for integrals (Lemma 4.5 in [11]) and obtain a lower tail error

O(
x1−σ

t
) +O(

yx1−σ

t
(t/x2)−1/2) = O(x1−σt−1/2) = O(t1/2−σyσ−1)

Adding all the errors (which are ≈ y in number) and remembering that N is very large so
the upper tail errors are smaller than the lower tail ones, while t ≈ xy, we have:

(39)
∑

x<n≤N

1

(n+ a)s
= Γ(1− s)

eπi(1−s)/2

(2π)1−s

∑
1≤m≤ t

2π(x+a)
+ 1

2

e−2πima

m1−s
+O(x−σ log t+ t1/2−σyσ−1)

Using that

|Γ(1− s)
eπi(1−s)/2

(2π)1−s
| ≈ t1/2−σ

we can replace
∑

1≤m≤ t
2π(x+a)

+ 1
2

e−2πima

m1−s by
∑

1≤m≤y
e−2πima

m1−s with an error of

O((t/x2)t1/2−σyσ−1) = O(y1/2x−1/2−σ)

since there are clearly at most ≈ t/x2 extra terms in the second sum, each with m ≈ y
But now taking a = h/q, h = 1, . . . , q in the relation (39) where we replace all summations

to be up to y as above and summing on h, relation (33) gives us precisely equation (32),
so the main part of Lemma 4.7 is proved, while remembering that |Gχ(1)| =

√
q gives the

claimed asymptotic for |c(s)|
□
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Lemma 4.8. Approximate Functional Equation for the Derivative of the L Function

For large T > 0 and s = σ + it, t ≈ T, 0 < σ < 1, 2πxy = t, x ≈
√
T , y ≈

√
T , χ a

primitive character of modulus q, and L = Lχ, we have

(40) L′(s) =
∑
n≤qx

−χ(n) log n

ns
−c(s) log

qs

2πi

∑
n≤y

χ(n)

n1−s
+c(s)

∑
n≤y

χ(n) log n

n1−s
+O(T−σ/2 log2 T )

Proof. (32) gives us that

L(s) =
∑
n≤qx

χ(n)

ns
+ c(s)

∑
n≤y

χ(n)

n1−s
+ f(s)

where f(s) is analytic and satisfies f(s) = O(T−σ/2 log T ) by our choices for t, x, y. Since
L′(s) = ∂L

∂σ
(σ+ it) we can keep t, x, y constant (so the sums do not change since their length

depends only on t, x, y) and differentiate each sum term by term, noting that (log c(s))′ =
c′(s)
c(s)

= − log qs
2πi

+ O( 1
T
) by the Stirling approximation, so we obtain the main three terms

above.
Applying Cauchy to a small circle around s of radius 1

log T
we get that

f ′(s) = O(T−σ/2 log2 T

∫ 2π

0

T− cos θ
2 log T dθ) = O(T−σ/2 log2 T )

□

Let’s now prove our result (Proposition 4.3) following the method of Selberg with the
simplifications allowed by our assumption that h, k ≤ T ε

For any fixed ε > 0 and 1 ≤ h, k ≤ T ε, (h, q) = (k, q) = 1 and 1/2 < σ ≤ 1, we have∫ 2T

T

χ(h)χ̄(k)
(h
k

)it

|L (σ + it)|2 dt =

∫ 2T

T

(L0,q(2σ)
((h, k)2

hk

)σ

+
( qt

2π

)1−2σ

L0,q(2− 2σ)
((h, k)2

hk

)1−σ

dt+O(T 1−σ/2+4ε)

Proof. Wlog we assume (h, k) = 1 also since if h = dh1, k = dk1, h/k = h1/k1, χ(h)χ̄(k) =

χ(h1)χ̄(k1),
d2

hk
= 1

h1k1
so the result for (h, k) follows from the one for (h1, k1).

Let τ =
√

t
2π
. We will apply relation (32) for x = τ

√
h
k
, y = τ

√
k
h
and for x = τ

√
k
h
, y =

τ
√

h
k
and we notice that in both cases the error in (32) is O(T−σ/2+ε). We use (32) directly

with x = τ
√

h
k
and conjugate with x = τ

√
k
h
, so

(41) L(s) =
∑

n≤qτ
√

h
k

χ(n)

ns
+ c(s)

∑
n≤τ

√
k
h

χ(n)

n1−s
+O(T−σ/2+ε)
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(42) L(s) =
∑

n≤qτ
√

k
h

χ(n)

nσ−it
+ c(s)

∑
n≤τ

√
h
k

χ(n)

n1−σ+it
+O(T−σ/2+ε)

Using the standard majorization (Lemma 1 in [9]): for 0 ≤ σ ≤ 1, R ≥ 2

(43)
∑

1≤n<m≤R

1

(mn)σ log m
n

= O(R2−2σ log2R)

we immediately see that (here R = O(T 1/2+ϵ), σ > 1/2)

(44) (

∫ 2T

T

|
∑

n≤qτ
√

h
k

χ(n)

ns
|dt)2 ≤ T

∫ 2T

T

|
∑

n≤qτ
√

h
k

χ(n)

ns
|2dt = O(T 2 log T )

and similarly for the other expression with x = τ
√

k
h

Similarly using |c(s)| = O(T 1/2−σ) we get

(45) (

∫ 2T

T

|c(s)
∑

n≤τ
√

k
h

χ(n)

n1−s
|dt)2 ≤ T 2−2σ

∫ 2T

T

|
∑

n≤τ
√

k
h

χ(n)

n1−s
|2dt = O(T 2 log T )

So using the expansion |L(s)|2 = L(s)L(s) given by (41) and (42) respectively and

|χ(h)χ(k)
(

h
k

)it

| = 1 we get that all terms that have O(T−σ/2+ε) as at least one factor

are O(T 1−σ/2+2ε)
Next we deal with

P =

∫ 2T

T

χ(h)χ(k)
(h
k

)it

(
∑

n≤qτ
√

h
k

χ(n)

nσ+it
)(

∑
m≤qτ

√
k
h

χ(m)

mσ−it
)dt

We note that each off-diagonal term where hm ̸= kn is

O(
1

(mn)σ| log mh
nk

|
) = O(T 2σε 1

(mhnk)σ| log mh
nk

|
)

So renaming mh = M,nk = N <<
√
Thk << T 1/2+ε and noting that each M,N is uniquely

determined by m,n respectively, another application of (43) shows that the sum of the off-
diagonal terms is O(T (1/2+ε)(2−2σ)+2σε log2 T ) = O(T 1−σ+3ε)

Since (h, k) = 1, the diagonal part hm = kn is parametrized by m = kM, n = hM,M ≤

q
(

t
2πhk

)1/2

and of course the crucial (M, q) = 1 due to the fact that χ(m) = χ(n) = 0 if

(M, q) ̸= 1. Hence we get that

(46) P =

∫ 2T

T

∑
1≤M≤q

(
t

2πhk

)1/2

χ0,q(M)(hk)−σ

M2σ
dt+O(T 1−σ+3ε)
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But using the method of proof for the equation (4) and noting that for χ0 we have∑q
h=1 χ0,q(h) = ϕ(q) we obtain that for any R ≥ 1, σ ̸= 1, 1/4 ≤ σ ≤ 2 we have

(47) L0,q(σ) =
∑
n≤qR

χ0,q(n)

nσ
− ϕ(q)R1−σ

1− σ
+O(R−σ).

Substituting the above with R =
(

t
2πhk

)1/2

, σ → 2σ in (46) we get

(48) P =

∫ 2T

T

((hk)−σL0,q(2σ)− (hk)−1/2
ϕ(q)

(
t
2π

)1/2−σ

1− 2σ
dt+O(T 1−σ/2 + T 1−σ+3ε)

Since |c(s)| =
(

qt
2π

)1/2−σ(
1 + O(1/t))

)
it is clear that in dealing with the second main

term

P1 =

∫ 2T

T

|c(s)|2χ(h)χ(k)
(h
k

)it

(
∑

n≤τ
√

h
k

χ(n)

n1−σ+it
)(

∑
m≤τ

√
k
h

χ(m)

m1−σ−it
)dt

we can replace |c(s)| with
(

qt
2π

)1/2−σ

and majorize the error trivially using (44)

For the off-diagonal terms we need to use the second Mean Value Theorem for integrals
applied to the real and imaginary part respectively and note that for λ ̸= 0 real and 1/2 ≤
σ ≤ 1 we have

(49)

∫ 2T

T

t1−2σeiλtdt = O(
T 1−2σ

|λ|
)

and then as above for P (with σ → 1− σ) we get that the sum of the off diagonal terms is

O(T 1−2σT σ+3ε) = O(T 1−σ+3ε)

The diagonal main term is parametrized again by

m = kM, n = hM,M ≤
( t

2πhk

)1/2

, (M, q) = 1

and we get that

(50) P1 =

∫ 2T

T

( qt

2π

)1−2σ ∑
1≤M≤

(
t

2πhk

)1/2

χ0,q(M)(hk)σ−1

M2−2σ
dt+O(T 1−σ+3ε)

We apply again (47) but this time with 2 − 2σ and R = 1
q

(
t

2πhk

)1/2

and we notice that

the error now is O(T 1−2σT σ−1/2) = O(T 1/2−σ), while in the oscillating term ϕ(q)R2σ−1

2σ−1
the

new q term from R precisely cancels with the q1−2σ from c(s), hk again appear at power
σ − 1− σ + 1/2 = 1/2, t

2π
also appears again at power 1− 2σ + σ − 1/2 = 1/2− σ and the

denominator 2σ − 1 is precisely the negative of 1 − 2σ from P so the two oscillating terms
cancel out! Hence:
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(51) P + P1 =

∫ 2T

T

(L0,q(2σ)(hk)
−σ +

( qt

2π

)1−2σ

L0,q(2− 2σ)(hk)σ−1)dt+O(T 1−σ+3ε)

It remains to deal with the cross product of the two main terms which is more delicate
since it involves the argument of c(s); since up to exchanging h with k, one is the conjugate
of the other, we need to deal with only one and will majorize everything by absolute values
once we estimate the integral of c(s)(h/mnk)it. We use again that for T ≤ t ≤ 2T we have

c(σ+ it) = α(σ+ it)
(

qt
2π

)1/2−σ(
1+O(1/T ))

)
, |α(s)| = 1 and estimate the error integral from

the O(1/T ) using (44) as before.

From Stirling’s approximation it follows precisely as 4.12.3 of [11], that up to the argu-

ments of χ(−1), Gχ(1) we have that α(σ + it) =
(

tq
2πe

)−it

.

If r = 2πmnk
qh

, applying the first derivative and the second derivative test respectively we

get that for any T ≤ T1 ≤ 2T, r ≤ T1 we have

(52)

∫ 2T

T1

( tqh

2πemnk

)it

dt =

∫ 2T

T1

( t

er

)it

dt = O(min(
1

log(T1/r)
,
√
T ))

Since a pair (n,m) appears in the product

(53) (
∑

n≤qτ
√

h
k

χ(n)

nσ+it
)(

∑
m≤τ

√
h
k

χ(m)

m1−σ+it
)

only if 2πn2k
hq2

≤ t, 2πm
2k

h
≤ t we first assume n/q > m and call T2 = 2πn2k

hq2
> 2πm2k

h
so

T2/r =
n
mq

> 1

If T2 ≤ T then clearly T/r ≥ n
mq

and the corresponding (n,m) appears in (53) for all

t ∈ [T, 2T ] hence (52) with T1 = T gives the bound∫ 2T

T

( tqh

2πemnk

)it

dt = O
( 1

log(T/r)

)
= O

( 1

log( n
mq

)

)
If T < T2 ≤ 2T we again apply (52) with T1 = T2 and get the same bound O

(
1

log( n
mq

)

)
as

above.

If T2 > 2T then clearly the (n,m) term doesn’t appear in our integral as the corresponding
t = T2 is too large.

Introducing (either applying the first derivative test to the complete function or using the
second MVT for integrals for the real and imaginary parts separately) the monotonic term
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qt
2π

)1/2−σ

in the oscillating integral we get (for n > mq) the bound

(54)

∫ 2T

T

( qt

2π

)1/2−σ( tqh

2πemnk

)it

dt = O
( T 1/2−σ

log( n
mq

)

)
Similarly for n < mq we get the bound

(55)

∫ 2T

T

( qt

2π

)1/2−σ( tqh

2πemnk

)it

dt = O
( T 1/2−σ

log(mq
n
)

)
For n = mq we use the square root bound from (52) hence we get

(56)

∫ 2T

T

( qt

2π

)1/2−σ( th

2πem2k

)it

dt = O(T 1−σ)

Putting all together we get that the cross term is

O(
∑

n/q ̸=m<<T 1/2+ε

n−σmσ−1
( T 1/2−σ

log(|mq
n
)|

)
+

∑
m<<T 1/2+ε

m−1T 1−σ)

Since mσ−1 = m−σm2σ−1 << T σ−1/2+εm−σ applying (43) (with mq → m) we get∑
n̸=mq<<T 1/2+ε

n−σmσ−1
( T 1/2−σ

log(|mq
n
)|

)
<< T 1−σ+3ε log2 T << T 1−σ+4ε

while ∑
m<<T 1/2+ε

m−1T 1−σ) << T 1−σ log T << T 1−σ+ε

so the cross terms are << T 1−σ+4ε

Hence looking at all the errors obtained in the various terms above, we see that they are
all at most O(T 1−σ/2+4ε) and the proposition is finally proved! □
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