
Lecture 8 – The calculus of residues MATH-GA 2450.001 Complex Variables I

1 The general form of Cauchy’s theorem

1.1 Chains

Let Ω be an open set in C. A chain in Ω is a finite collection γj : [aj , bj ] → Ω , j = 1, . . . , N of piecewise
continuously differentiable curves in Ω.
Writing Γ = γ1 + γ2 + . . . + γN for a given chain, we can integrate a continuous function f in Ω along Γ as
follows: ∫

Γ

f(z)dz =

N∑
j=1

∫
γj

f(z)dz

1.2 Cycles

A cycle in Ω is a chain Γ =
∑N
j=1 γj where each point z ∈ C is an initial point of just as many of the γj as

it is a terminal point. In other words, a cycle is a finite sum of closed curves.

As an illustration, the index of a point z with respect to the cycle Γ is

n(Γ, z) =
1

2πi

∫
Γ

dζ

ζ − z
=

N∑
j=1

∫
γj

dζ

ζ − z

Observe that the integrals in the sum on the right-hand side of the last equality above may not be over closed
curves.

1.3 Simple connectivity and homology

1.3.1 Simply connected sets in C

We start this section with an unusual definition for simple connectedness. Its weakness is that it is not
general, in the sense that it cannot be used in Rn with n ≥ 3. However it can be shown that for C, it is
equivalent to the more common definition, which says that any simple closed curve can be shrunk to a point
continuously in the set. And the advantage of our unusual definition is that it is more convenient for the
statement of the general form of the Cauchy-Goursat theorem.

Definition: An open connected set Ω ⊂ C is said to be simply connected if its complement with respect to
Ĉ is connected.

Note: In this definition, it is important to stress that the complement is with respect to Ĉ and not just C.
Missing this point could lead you to easily find counterexamples which do not agree with the definition.

Theorem: An open connected set Ω ⊂ C is simply connected if and only if n(γ, z) = 0 for all cycles γ in Ω
and all points z /∈ Ω

Proof : • Let us start with the necessary condition: for any cycle γ ∈ Ω, the complement of Ω in Ĉ must be
in one of the regions determined by γ (interior or exterior), since this complement is connected. Since {∞}
belongs to this complement, this must be the unbounded region defined by γ. From Lecture 5, we thus know
that n(γ, z) = 0 ∀z /∈ Ω.

• We prove the sufficient condition by direct construction. Specifically, we will show that if a region Ω is not
simply connected, then one can construct a cycle γ in Ω and find a point z0 which does not belong to Ω such
that n(γ, z0) 6= 0.

Let us assume that the complement of Ω in Ĉ is A ∪ B, with A and B disjoint closed sets, with a shortest
distance δ > 0 between the two sets. Let us say that B is the unbounded set, so A is bounded. We cover A
with a net of squares S whose sides have length l < δ/

√
2, constructed in such a way that z0 ∈ A lies at the

center of a square, as shown in Figure 1.

Consider the cycle γ =
∑
j ∂Sj , where ∂Sj is the boundary curve of each square Sj , and where the sum is

taken over the net covering A.

1



Figure 1: Net of squares covering the set A without intersecting the set B

Observe first that n(γ, z0) = 1 since z0 belongs to only one of the squares in the net.
Furthermore, it is clear that γ does not belong to B. Now, the key is to realize that γ does not belong to
A either, in the sense that there exists a cycle γ̃ contained in Ω such that n(γ̃, z0) = n(γ, z0) = 1. Indeed,
γ̃ is directly obtained from γ by observing that in the integral corresponding to n(γ, z0), all the sides of
the squares contained in A are traversed exactly twice, in opposite directions, and therefore cancel. This
concludes our proof �

1.3.2 Homology

Definition: A cycle γ in an open set Ω is said to be homologous to zero with respect to Ω if n(γ, z) = 0 for

all z in the complement of Ω in Ĉ.
One writes γ ∼ 0 (mod Ω), or often γ ∼ 0 when it is clear that one is talking about Ω.
γ1 ∼ γ2 means γ1 − γ2 ∼ 0

Note that with this notation, the previous theorem can be written as
Theorem: An open connected set Ω ⊂ C is simply connected if and only if γ ∼ 0 for all γ in Ω.

1.4 The general form of the Cauchy-Goursat theorem

We now have all the tools required to give the Cauchy-Goursat theorem in its most general form.

Theorem (General form of the Cauchy-Goursat theorem): If f is analytic in the open set Ω, then∫
γ
f(z)dz = 0 for every cycle γ which is homologous to zero in Ω.

For the sake of time, we will not provide a proof of this theorem in these notes. The interested reader can
find an elegant proof, first proposed by John Dixon in the Proceedings of the American Mathematical Society,
Volume 29, Number 3, August 1971 in Lecture 9 of my notes for the PhD level class, which can be found
here: https://www.math.nyu.edu/~cerfon/complex_notes/Lecture_9.pdf

Corollary 1: If f is analytic in a simply connected open set Ω, then
∫
γ
f(z)dz = 0 for all cycles in Ω.

This follows directly from the Cauchy-Goursat theorem, and the theorem in page 1 of these notes. This
corollary corresponds to the “simple form” of the Cauchy-Goursat theorem we presented without proof in
Section 4.4 of Lecture 4.

Corollary 2: If f is analytic and nonzero in a simply connected open region Ω, then it is possible to define
single-valued analytic branches of ln[f(z)] and n

√
f(z) in Ω.
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Indeed, by the Cauchy-Goursat theorem we know that∫
γ

f ′(z)

f(z)
dz = 0

for all cycles in Ω. We then know that there exists an analytic function F such that F ′(z) = f ′(z)/f(z)
∀z ∈ Ω.
In other words,

d

dz

[
f(z)e−F (z)

]
= 0 ⇔ f(z) = AeF (z) , A ∈ C∗

Now, choose z0 ∈ Ω and one of the infinitely many values of ln[f(z0)].

exp [F (z)− F (z0) + ln[f(z0)]] =
f(z)

A
e−F (z0)f(z0) = f(z)

We can therefore define a single-valued, analytic branch of the logarithm of f as

ln f(z) = F (z)− F (z0) + ln f(z0)

The definition of n
√
f follows from this result, as ∀z ∈ Ω we write n

√
f = exp

[
1
n ln(f(z))

]
2 The residue theorem

2.1 Residue of a function at a point

Definition: Consider a function f which is analytic in an open connected set Ω except for the isolated
singularity at a. Consider a circle C centered in a and contained in Ω. Let

P =

∫
C

f(z)dz

If we set R = P
2πi , the function

g(z) := f(z)− R

z − a
, ∀z ∈ Ω \ {a}

is such that ∫
C

g(z)dz = 0

R as defined above is called the residue of f at a:

Resz=af(z) =
1

2πi

∫
CR(a)

f(z)dz

Of course, the definition only makes sense if it is independent of the choice of the radius R > 0 of the circle
C. By the Cauchy-Goursat theorem, following exactly the same procedure as we have done in the first page
of Lecture 7, this is not too hard to see.

2.2 The residue theorem

Consider a function f which is analytic in the open connected set Ω except for finitely many singularities
aj . Let γ be a cycle in Ω′ = Ω \ {aj}j=1,...,N which is homologous to zero with respect to Ω. Then

γ ∼
∑N
j=1 n(γ, aj)Cj (mod Ω′), where Cj is any circle centered in aj and contained in Ω′.

By the general form of the Cauchy-Goursat theorem, we can thus write∫
γ

f(z)dz =

N∑
j=1

n(γ, aj)

∫
Cj

f(z)dz

⇔ 1

2πi

∫
γ

f(z)dz =

N∑
j=1

n(γ, aj)Resz=ajf(z) (1)
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Theorem (Residue theorem): Let f be analytic except for isolated singularities aj in an open connected
set Ω. Then

1

2πi

∫
γ

f(z)dz =
∑
j

n(γ, aj)Resz=ajf(z) (2)

for any cycle γ which is homologous to zero in Ω and does not pass through any of the points aj . The sum
(2) is finite.

2.3 Computing residues

As one may expect, the residue theorem is particularly convenient to use when γ is such that ∀aj , n(γ, aj) =
0 or 1.

More importantly, it is only useful as a tool for integration if there is a simple method to compute residues.
Returning to Lecture 7 and Laurent series, we see that the definition of the residue of f at a coincides with
the coefficient c−1 of the Laurent series of f centered in a, i.e. the coefficient of 1/(z − a) in that Laurent
series.

For the situation in which f has a pole of order N at a, we can derive another method for calculating the
residue of f at a, which is often more convenient and faster.
g(z) = (z−a)Nf(z) is analytic in a neighborhood of a. Integrating along a circle C centered in a and in that
neighborhood, we may write

g(N−1)(a) =
(N − 1)!

2πi

∫
C

g(z)

(z − a)N
dz = (N − 1)!Resz=af(z)

Hence,

Resz=af(z) =
1

(N − 1)!

dN−1

dzN−1

[
(z − a)Nf(z)

]∣∣∣∣
z=a

(3)

In particular, if f(z) = g(z)/h(z) and h has a simple zero at a and g(a) 6= 0,

Resz=af(z) =
g(a)

h′(a)

Example: Use the residue theorem to compute ∮
|z|=1

eiz

z2
dz

where the circle is traversed in the counterclockwise direction.

3 Additional local properties of analytic functions

In previous lectures, we saw some fundamental local properties of analytic functions, such as the fact that
any analytic function can be locally expanded as a power series with a finite radius of convergence, or the
fact that the modulus of a nonconstant analytic function cannot have a maximum inside an open connected
set on which the function is defined and analytic.

Now that we introduced the residue theorem, we will be able to efficiently derive a new set of important
local properties.

3.1 The argument principle

Theorem (The argument principle): If f is meromorphic in an open connected set Ω, with zeros aj and
poles bk, then

1

2πi

∫
γ

f ′(z)

f(z)
dz =

∑
j

n(γ, aj)−
∑
k

n(γ, bk) (4)
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for every cycle γ which is homologous to zero in Ω and does not pass through any of the zeros and poles.
The sums in (4) are finite, and multiple zeros and poles have to be repeated as many times as their order
indicates.

Proof : Let us first assume that the function has a finite number of zeros and poles, and call K that number.
Consider the orders Nj of the zeros and poles zj of f in Ω. Nj > 0 if zj is a zero of f , Nj < 0 if zj is a pole
of f . Let

g(z) := f(z)ΠK
j=1(z − zj)−Nj

g only has removable singularities in Ω, so we can view it as analytic in Ω. Furthermore, g does not have
zeros inside Ω. Writing f(z) = g(z)ΠK

i=j(z − zj)Nj and taking the logarithmic derivative of that equality for
z 6= zj , we find

f ′(z)

f(z)
=

K∑
j=1

Nj
z − zj

+
g′(z)

g(z)

We integrate this equality along any cycle γ homologous to zero in Ω and which does not pass through any
zj . By the Cauchy-Goursat theorem,

∫
γ
g′(z)/g(z) = 0, and by the definition of the index of a point with

respect to a curve applied to the remainder of the right-hand side (or by the residue theorem if you prefer to
see it this way), we get the desired result.

The proof can be extended to the situation in which the function f may have an infinite number of zeros
and/or poles. Consider for example the situation in which f has infinitely many zeros in Ω. Since γ is inside
Ω, it is contained in a closed set Ω′ inside Ω. Now, since f is not identically zero, it can only have finitely
many zeros inside Ω′. This result follows from a combination of the Bolzano-Weierstrass theorem and the
identity theorem. Therefore, the formula (4) holds inside Ω′. It then holds in Ω too, since for the zeros ζj
of f outside of Ω′, n(γ, ζj) = 0. A similar argument can be easily constructed if f has an infinite number of
poles. Thus Eq.(4) remains true in these cases as well, with the sums still finite �

Intuitive interpretation of the argument principle

Observe that the integral on the left of (4) can be represented as

1

2πi

∫
γ

f ′(z)

f(z)
dz =

1

2πi

∫ b

a

f ′(γ(t))γ′(t)

f(γ(t))
dt =

1

2πi

∫ b

a

(f ◦ γ)′(t)

(f ◦ γ)(t)
dt =

1

2πi

∫
f◦γ

dw

w

f ◦ γ is a closed curved Γ. The equality (4) in the theorem can thus be interpreted as the equality

n(Γ, 0) =
∑
j

n(γ, ζj)−
∑
k

n(γ, bk)

where n(Γ, 0) represents the number of times the closed curve Γ, which is the image of γ by f , goes around
the origin.

A very common case is the one for which γ is a simple closed curve C oriented counterclockwise. In that
case, the argument principle takes the simple form:

n(Γ, 0) = N − P

where N and P denote the number of zeros and poles of f inside C, with each zero and pole counted as many
times as its order indicates.

This formula is at the heart of a number of numerical methods to locate the zeros and poles of an analytic
function. This is because even fairly inaccurate algorithms for the calculation of n(Γ, 0) will give results close
enough to an integer value that one can directly infer the corresponding exact integer value.

The name “argument principle” can be given the following intuitive – although not at all rigorous – inter-
pretation:

“
dw

w
= d(lnw) = d(ln |w|+ iargw) ”

Note the quotes around these equalities, which should be seen as formal equalities and nothing else. For
any curve that does not pass through 0, ln |w| is well defined, so by the fundamental theorem of calculus the
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contribution of the real part in the formal equalities above to the integral is zero when one integrates over a
closed curve.
Let me stress, once more, that this is just intended to provide an intuition, but it is not fully rigorous.

Example: Let f(z) = z2 + z, Γ1 = f ◦ γ1 with γ1 the circle of radius 1/2 centered in 0, and Γ2 = f ◦ γ2 with
γ2 the circle of radius 2 centered in 0.
We have n(Γ1, 0) = 1− 0 = 1, and n(Γ2, 0) = 2− 0 = 0.
Note that for this example, we could not apply the argument principle for the unit circle centered in 0 since
f(−1) = 0.

3.2 Rouché’s theorem

Rouché’s theorem can be viewed as a corollary of the argument principle. It can be stated as follows.

Theorem (Rouché’s theorem): Let γ be a cycle which is homologous to zero in the open connected set
Ω and such that n(γ, z) is either 0 or 1 for all z ∈ Ω such that z /∈ γ. Suppose that f and g are analytic in
Ω, and that ∀z ∈ γ, |f(z)− g(z)| < |f(z)|. Then f and g have the same number of zeros enclosed by γ.

Proof : From the hypotheses of the theorem, we know that ∀ z ∈ γ, f(z) 6= 0 and g(z) 6= 0. Along γ, we can
therefore consider the function ψ(z) := g(z)/f(z). ψ is such that

∀ z ∈ γ, |ψ(z)− 1| < 1

Hence, ∫
γ

ψ′(z)

ψ(z)
=

∫
Γ

dζ

ζ
= 2πin(Γ, 0) = 0

where we have used the change of variable ζ = ψ(z), Γ = ψ(γ) to derive the first equality.
Now, let Ng be the number of zeros of g inside γ, and Nf the number of zeros of f inside γ. By the argument
principle,

0 =

∫
γ

ψ′(z)

ψ(z)
dz = Ng −Nf ⇔ Nf = Ng �

Typical example of the use of Rouché’s theorem

Consider the polynomial z4 − 6z + 3. How many zeros does it have in the annulus between |z| = 1 and
|z| = 2?

Start with γ1 : |z| = 2, and take f1(z) = z4 , g1(z) = z4 − 6z + 3.

∀z ∈ γ1 , |f1(z)− g1(z)| = |6z − 3| ≤ 15 < 16 = |f1(z)|

Hence both f1 and g1 have 4 zeros inside |z| = 2.

Now consider γ2 : |z| = 1, and define f2(z) = −6z, g2(z) = z4 − 6z + 3

∀z ∈ γ2 , |f2(z)− g2(z)| = |z4 + 3| ≤ 4 < 6 = |f2(z)|

So both f2 and g2 have 1 zero inside |z| = 1
We conclude that z4 − 6z + 3 = 0 has 3 roots in the annulus.

3.3 Open mapping theorem

Another important local property of analytic functions, which can be viewed as a corollary of Rouché’s
theorem, can be expressed as follows.

Theorem (Open mapping theorem): A nonconstant analytic function maps open sets to open sets.
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Proof: Let us consider a nonconstant analytic function f on an open set Ω, z0 ∈ Ω, and w0 = f(z0). We
need to show that there is a neighborhood Dδ(w0) such that Dδ(w0) ⊂ f(Ω), i.e. that

∀ w s.t. |w − w0| < δ , ∃ z ∈ Ω s.t. w = f(z)

.
The idea of the proof is to look for zeros of f(z) − w for w close to w0, knowing that f(z) − w0 has the

zero z0.

Step 1 : Let us take ε small enough that that Dε(z0) ⊂ Ω and that the closed disk does not contain other
zeroes of F (z) := f(z)−w0. It is possible to find such a disk, since the zeros of analytic functions are isolated.
In particular, we can write

∀ z ∈ Cε(z0) , F (z) 6= 0

Step 2 : The function |F (z)| is continuous on Cε(z0) and therefore achieves its minimum on Cε(z0) since
Cε(z0) is compact. Let

δ = min{|F (z)| , z ∈ Cε(z0)}

By construction of Cε(z0), δ > 0.
Step 3 : For all w ∈ C such that |w − w0| < δ, we define

gw(z) = f(z)− w

We have, for all z ∈ Cε(z0)

|F (z)− gw(z)| = |f(z)− w0 − f(z) + w| = |w − w0| < |F (z)|

Hence, for any w ∈ C such that |w−w0| < δ, gw has the same number of zeros as F inside Dε(z0) by Rouché’s
theorem, and therefore at least one. This concludes our proof �
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