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Complex Variables

1 Chains and cycles

1.1 Chains

Let Ω be an open set in C. A chain in Ω is a finite collection γj : [aj , bj ] → Ω j = 1, . . . , N of piecewise
continuously differentiable curves in Ω.
Writing Γ = γ1 + γ2 + . . . + γN for a given chain, we can integrate a continuous function f in Ω along Γ as
follows: ∫

Γ

f(z)dz =

N∑
j=1

∫
γj

f(z)dz

1.2 Cycles

A cycle in Ω is a chain Γ =
∑N
j=1 γj where each point z ∈ C is an initial point of just as many of the γj as

it is a terminal point. In other words, a cycle is a finite sum of closed curves.

As an illustration, the index of a point z with respect to the cycle Γ is

n(Γ, z) =
1

2πi

∫
Γ

dζ

ζ − z
=

N∑
j=1

∫
γn

dζ

ζ − z

Observe that the integrals in the sum on the right-hand side of the last equality above may not be over closed
curves.

2 Simple connectivity and homology

2.1 Simple connected sets in C
Below, we start this section with an unusual definition for simple connectedness. Its weakness is that it is
not general, in the sense that it cannot be used in Rn with n ≥ 3. However, we will show later in this course
that for C, it is equivalent to the more common definition, which says that any simple closed curve can be
shrunk to a point continuously in the set. And the advantage of our unusual definition is that it is more
convenient for the proof of the general form of Cauchy’s theorem.

Definition: An open connected set Ω ⊂ C is said to be simply connected if its complement with respect to
Ĉ is connected.

Theorem: An open connected set Ω ⊂ C is simply connected if and only if n(γ, z) = 0 for all cycles γ in Ω
and all points z /∈ Ω

Proof : • Let us start with the necessary condition: for any cycle γ ∈ Ω, the complement of Ω in Ĉ must be
in one of the regions determined by γ (interior or exterior), since this complement is connected. Since {∞}
belongs to this complement, this must be the unbounded region defined by γ. From Lecture 6, we thus know
that n(γ, z) = 0 ∀z /∈ Ω.

• We prove the sufficient condition by direct construction. Specifically, we will show that if a region Ω is not
simply connected, then one can construct a cycle γ in Ω and find a point z0 which does not belong to Ω such
that n(γ, z0) 6= 0.

Let us assume that the complement of Ω in Ĉ is A ∪ B, with A and B disjoint closed sets, with a shortest
distance δ > 0 between the two sets. Let us say that B is the unbounded set, so A is bounded. We conver
A with a net of squares S whose sides have length l < δ/

√
2, constructed in such a way that z0 ∈ A lies at

the center of a square, as shown in Figure 1.

Consider the cycle γ =
∑
j ∂Sj , where ∂Sj is the boundary curve of each square Sj , and where the sum is

taken over the net covering A.
Observe first that n(γ, z0) = 1 since z0 belongs to only one of the squares in the net.
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Figure 1: Net of squares covering the set A without intersecting the set B

Furthermore, it is clear that γ does not belong to B. Now, the key is to realize that γ does not belong to
A either, in the sense that there exists a cycle γ̃ contained in Ω such that n(γ̃, z0) = n(γ, z0) = 1. Indeed,
γ̃ is directly obtained from γ by observing that in the integral corresponding to n(γ, z0), all the sides of
the squares contained in A are traversed exactly twice, in opposite directions, and therefore cancel. This
concludes our proof �

2.2 Homology

Definition: A cycle γ in an open set Ω is said to be homologous to zero with respect to Ω if n(γ, z) = 0 for

all z in the complement of Ω in Ĉ.
One write γ ∼ 0 (mod Ω), or often γ ∼ 0 when it is clear that one is talking about Ω.
γ1 ∼ γ2 means γ1 − γ2 ∼ 0

Note that with this notation, the previous theorem can be written as
Theorem: An open connected set Ω ⊂ C is simply connected if and only if γ ∼ 0 for all γ in Ω.

3 The general form of Cauchy’s theorem

We now have all the tools required to give Cauchy’s theorem in its most general form.

Theorem: If f is analytic in the open set Ω, then
∫
γ
f(z)dz = 0 for every cycle γ which is homologous to

zero in Ω.

Proof : Consider γ such that γ ∼ 0(mod Ω), and the set

E = {z ∈ C \ γ : n(γ, z) = 0}

which is open.
We define the function

g : (z, ζ) ∈ Ω2 7→

{
f(ζ)−f(z)

ζ−z , z 6= ζ

f ′(z) , z = ζ

g is continuous in both its variables. Furthermore, ∀ζ0 ∈ Ω, g̃ : z 7→ g(z, ζ0) is analytic in Ω since
lim
z→ζ0

(z − ζ0)g(z, ζ0) = 0, so ζ0 is a removable singularity.
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We now introduce the function h on C defined by{
h(z) = 1

2πi

∫
γ
g(z, ζ)dζ if z ∈ Ω

h(z) = 1
2πi

∫
γ
f(ζ)
ζ−z dζ if z ∈ E

h is indeed defined on all of C since C \ Ω ⊂ E , so that Ω ∪ E = C, and also because the two definitions of
h agree on Ω ∩ E since n(γ, z) = 0 ∀z ∈ Ω ∩ E.

We claim that h is entire. h is analytic in E by the same argument that was made in Lecture 6.
To prove that h is analytic on Ω, we consider the following lemma:

Suppose [a, b] ⊂ R and let ϕ be a continuous complex-valued function on Ω× [a, b] such that ∀t ∈ [a, b] , z 7→
ϕ(z, t) is analytic on Ω. If we define F by

F (z) =

∫ b

a

ϕ(z, t)dt , ∀z ∈ Ω

F is analytic on Ω.

The proof of that lemma is as follows. Let z0 ∈ Ω and R > 0 such that DR(z0) ⊂ Ω.
∀z ∈ DR(z0),

F (z) =

∫ b

a

ϕ(z, t)dt =
1

2πi

∫ b

a

(∫
|ζ−z0|=R

ϕ(ζ, t)

ζ − z
dζ

)
dt

=
1

2πi

∫
|ζ−z0|=R

(∫ b

a

ϕ(ζ, t)dt

)
dζ

ζ − z

where the interchange in the order of integration can be justified by parametrizing the integral over |ζ−z0| = R
and applying the result for interchanging the order of integration for continuous functions on rectangles.

Now,
∫ b
a
ϕ(ζ, t)dt is a continuous function of ζ, so again by the same reasoning as in Lecture 6, F is analytic

on DR(z0).

We conclude that h is entire. Now, for |z| sufficiently large, n(γ, z) = 0 so z ∈ E, and since f is bounded on
γ, h(z)→ 0 as |z| → ∞. We conclude that h is bounded, and h ≡ 0 by Liouville’s theorem.

Hence ∀z ∈ Ω \ γ,
1

2πi

∫
γ

g(z, ζ)dζ = 0 ⇔ n(γ, z)f(z) =
1

2πi

∫
γ

f(ζ)

ζ − z
dζ

This is the generalized version of Cauchy’s integral formula, which we can now use to prove Cauchy’s theorem.

Let z0 ∈ Ω \ γ, and consider F (z) = (z − z0)f(z) , (z ∈ Ω)∫
γ

f(z)dz =

∫
γ

F (z)

z − z0
dz = 2πin(γ, z0)F (z0) = 0

This completes this very elegant proof, first proposed by John Dixon in the Proceedings of the American
Mathematical Society, Volume 29, Number 3, August 1971.

Corollary 1: If f is analytic in a simply connected open set Ω, then
∫
γ
f(z)dz = 0 for all cycles in Ω.

This follows directly from Cauchy’s theorem, and the theorem in page 1 of these notes.

Corollary 2: If f is analytic and nonzero in a simply connected open region Ω, then it is possible to define
single-valued analytic branches of ln[f(z)] and n

√
f(z) in Ω.

Indeed, by Cauchy’s theorem we know that ∫
γ

f ′(z)

f(z)
dz = 0
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for all cycles in Ω. We then know that there exists an analytic function F such that F ′(z) = f ′(z)/f(z)
∀z ∈ Ω.
In other words,

d

dz

[
f(z)e−F (z)

]
= 0 ⇔ f(z) = AeF (z) , A ∈ C∗

Now, choose z0 ∈ Ω and one of the infinitely many values of ln[f(z0)].

exp [F (z)− F (z0) + ln[f(z0)]] =
f(z)

A
e−F (z0)f(z0) = f(z)

We can therefore define a single-valued, analytic branch of the logarithm of f as

ln f(z) = F (z)− F (z0) + ln f(z0)

The definition of n
√
f follows from this result, as ∀z ∈ Ω we write n

√
f = exp

[
1
n ln(f(z))

]
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