Lecture 9 — The general form of Cauchy’s theorem = MATH-GA 2451.001
Complex Variables

1 Chains and cycles
1.1 Chains

Let © be an open set in C. A chain in Q is a finite collection ~; : [a;,b;] — Q j =1,...,N of piecewise
continuously differentiable curves in (2.
Writing I' = 1 + 72 + ... + yn for a given chain, we can integrate a continuous function f in  along I' as

follows: N
/Ff(z)dz:ZL f(z)dz

j=1 J

1.2 Cycles

A cycle in Q is a chain T = Zjvzl ~; where each point z € C is an initial point of just as many of the v; as
it is a terminal point. In other words, a cycle is a finite sum of closed curves.

As an illustration, the index of a point z with respect to the cycle I' is
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Observe that the integrals in the sum on the right-hand side of the last equality above may not be over closed
curves.

2 Simple connectivity and homology

2.1 Simple connected sets in C

Below, we start this section with an unusual definition for simple connectedness. Its weakness is that it is
not general, in the sense that it cannot be used in R™ with n > 3. However, we will show later in this course
that for C, it is equivalent to the more common definition, which says that any simple closed curve can be
shrunk to a point continuously in the set. And the advantage of our unusual definition is that it is more
convenient for the proof of the general form of Cauchy’s theorem.

Definition: An open connected set {2 C C is said to be simply connected if its complement with respect to
C is connected.

Theorem: An open connected set £ C C is simply connected if and only if n(y, z) = 0 for all cycles v in Q
and all points z ¢ Q

Proof: e Let us start with the necessary condition: for any cycle v € €2, the complement of ) in C must be
in one of the regions determined by ~ (interior or exterior), since this complement is connected. Since {oco}
belongs to this complement, this must be the unbounded region defined by ~. From Lecture 6, we thus know
that n(y,2z) =0Vz ¢ Q.

o We prove the sufficient condition by direct construction. Specifically, we will show that if a region 2 is not
simply connected, then one can construct a cycle v in 2 and find a point zy which does not belong to €2 such
that n(y, z9) # 0.

Let us assume that the complement of €2 in Cis AU B, with A and B disjoint closed sets, with a shortest
distance § > 0 between the two sets. Let us say that B is the unbounded set, so A is bounded. We conver
A with a net of squares S whose sides have length [ < §/+/2, constructed in such a way that zyp € A lies at
the center of a square, as shown in Figure 1.

Consider the cycle v = 3 j 0S5, where 0S; is the boundary curve of each square S;, and where the sum is
taken over the net covering A.
Observe first that n(v, z9) = 1 since zp belongs to only one of the squares in the net.



Figure 1: Net of squares covering the set A without intersecting the set B

Furthermore, it is clear that v does not belong to B. Now, the key is to realize that v does not belong to
A either, in the sense that there exists a cycle 4 contained in  such that n(%, z0) = n(v,20) = 1. Indeed,
4 is directly obtained from + by observing that in the integral corresponding to n(v,zp), all the sides of
the squares contained in A are traversed exactly twice, in opposite directions, and therefore cancel. This
concludes our proof [

2.2 Homology

Definition: A cycle « in an open set €2 is said to be homologous to zero with respect to Q if n(~, z) = 0 for

all z in the complement of €2 in C.
One write v ~ 0 (mod ), or often v ~ 0 when it is clear that one is talking about .

71~ 72 means y; — 2 ~ 0

Note that with this notation, the previous theorem can be written as
Theorem: An open connected set ) C C is simply connected if and only if v ~ 0 for all v in €.

3 The general form of Cauchy’s theorem

We now have all the tools required to give Cauchy’s theorem in its most general form.

Theorem: If f is analytic in the open set €2, then f,y f(z)dz = 0 for every cycle v which is homologous to
zero in ().

Proof: Consider « such that v ~ 0(mod ), and the set
E={:€C\7 : n(y,2) =0}
which is open.

We define the function
F(O-f(2) L2 £ C

g: (Z,C)EQ2+—>{ (=

f'(z) , z2=¢
g is continuous in both its variables. Furthermore, V(o € Q, § : 2z — g(z,(p) is analytic in Q since
Jim (2 — Co)g(2, Co) = 0, so (o is a removable singularity.



We now introduce the function h on C defined by

{h(z) =55 [ g(2,Q)dC if 2 € Q

h(z) = 55 [ L8d¢ itz € B

h is indeed defined on all of C since C\ Q C E , so that QU E = C, and also because the two definitions of
h agree on QN E since n(y,z) =0z € QN E.

We claim that h is entire. h is analytic in F by the same argument that was made in Lecture 6.
To prove that h is analytic on €2, we consider the following lemma:

Suppose [a,b] C R and let ¢ be a continuous complex-valued function on € x [a, b] such that V¢ € [a,b] , z —
p(z,t) is analytic on Q. If we define F' by

b
F(z2) = / o(z,t)dt , Vz € Q
F is analytic on Q.

The proof of that lemma is as follows. Let zy € Q and R > 0 such that Dr(z) C .

Vz € DR(Z(]),
b b
F(z) = / p(z,t)dt = 2%” (/K n s?i’?d() dt

1 b «
% |¢—2z0|=R (/a @(C,t)dt) Cj

where the interchange in the order of integration can be justified by parametrizing the integral over |[(—z9| = R
and applying the result for interchanging the order of integration for continuous functions on rectangles.

Now, fa (¢, t)dt is a continuous function of ¢, so again by the same reasoning as in Lecture 6, F' is analytic
on Dg(zp).

We conclude that h is entire. Now, for |z| sufficiently large, n(v, z) = 0 so z € E, and since f is bounded on
v, h(z) = 0 as |z] = oo. We conclude that h is bounded, and h = 0 by Liouville’s theorem.

Hence Vz € Q \ v,

1 B 17 f©)
2m/yg(z,<)dC—O < n(v,2)f(2) = m[yczdé“

This is the generalized version of Cauchy’s integral formula, which we can now use to prove Cauchy’s theorem.

Let zg € Q\ 7, and consider F(z) = (z — 29) f(2) ,

F

/f(z)dz = / ﬁdz = 2min(y, 20)F(z0) =0
v ¥

zZ— 20

(z€Q)

This completes this very elegant proof, first proposed by John Dixon in the Proceedings of the American
Mathematical Society, Volume 29, Number 3, August 1971.

Corollary 1: If f is analytic in a simply connected open set €2, then f,y f(z)dz = 0 for all cycles in 2.
This follows directly from Cauchy’s theorem, and the theorem in page 1 of these notes.

Corollary 2: If f is analytic and nonzero in a simply connected open region {2, then it is possible to define
single-valued analytic branches of In[f(z)] and {/f(2) in Q.

/7 j}’((zz)) dz=0

Indeed, by Cauchy’s theorem we know that




for all cycles in 2. We then know that there exists an analytic function F' such that F’'(z) = f'(2)/f(2)
Vz € Q.
In other words,

d% [f(z)e*”'z)} —0 & f(z)=Aef®  AcCr
Now, choose zp € 2 and one of the infinitely many values of In[f(z0)].

exp [F(2) ~ F(zo) + [ (z0)]] = LE e 20 = f(2)

We can therefore define a single-valued, analytic branch of the logarithm of f as
In f(2) = F(2) — F(20) + In f(20)

The definition of {/f follows from this result, as Vz €  we write {/f = exp [% In(f (2))}



