
École Nationale Supérieure des Mines de Paris

Escuela Técnica Superior de Ingenieros de Telecomunicación

(Universidad Politécnica de Madrid)
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Abstract

This Master’s thesis studies the application of nonlinear techniques to the reconstruction of par-

allel magnetic resonance imaging (MRI) data. The implementation and evaluation of a recently

published algorithm introducing a nonlinear framework to the area of parallel MRI is presented. In

addition, the adaptation of Compressive Sampling techniques to parallel MRI is explored. Finally,

two novel Compressive Sampling algorithms for parallel MRI are proposed and evaluated using

both simulated and measured MRI data.

Key words : Parallel MRI, nonlinear reconstruction, Compressive Sampling, wavelet transform,

greedy algorithms, transform domain incoherence, polynomial model.



Résumé

Ce rapport de stage traite de l’application de techniques non-linéaires à la reconstruction d’images

dans le domaine de l’imagerie par résonance magnétique (IRM) parallèle. En particulier, un al-

gorithme publié récemment est décrit et les résultats de son évaluation sont analysés. En outre,

l’adaptation des techniques de Compressive Sampling à l’IRM parallèle est explorée. Dans cette

perspective, deux nouveaux algorithmes sont proposés et leurs performances évaluées à l’aide de

données simulées et mesurées.

Mots-clés : IRM parallèle, reconstruction non linéaire, Compressive Sampling, décomposition

en ondelettes, algorithme glouton, incohérence entre bases, modèle polynomial.
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Introduction

The main subject of this Master’s thesis is the development of nonlinear algorithms for the re-

construction of images from parallel magnetic resonance (MR) data. As opposed to current linear

methods, nonlinear algorithms make it possible to exploit intrinsic characteristics of MR images,

such as their sparsity in a certain transform domain, to improve their reconstruction. They also

allow for more flexible reconstruction models, in which the sensitivity functions of the coils used to

acquire the data can be incorporated as additional variables.

The first chapter in the thesis provides a brief introduction to parallel magnetic resonance imaging

(MRI), with a special emphasis on the most popular current reconstruction methods and their main

limitations. The second chapter is dedicated to Compressive Sampling, a recently proposed tech-

nique which permits reconstruction from highly undersampled data, and its applications to MRI.

This sets the context for the analysis of several nonlinear algorithms which aim to improve the qual-

ity of parallel MR image reconstructions by addressing some of the limitations of current techniques.

More specifically, a recently published algorithm that introduces a nonlinear framework for the

joint estimation of the image and the coil sensitivity functions is analysed in the third chapter.

The combination of such a joint reconstruction procedure with Compressive Sampling is explored

in the fourth chapter, along with some other applications of Compressive Sampling to parallel

MRI. Finally, in the fifth chapter, a novel algorithm which combines k-space interpolation and

Compressive Sampling is proposed. Each of the three last chapters includes a theoretical analysis

of the corresponding MRI reconstruction algorithm, a detailed description of the employed methods,

an account of the different experiments and a final section discussing the results.
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Chapter 1

Parallel Magnetic Resonance Imaging

The first two sections of this chapter provide a brief introduction to magnetic resonance imaging

(MRI). The main aim is to introduce MRI concepts which are used throughout the report and not

to provide a detailed technical account. Such an account can be found, for example, in the main

reference for these two sections [13]. The third section describes the motivation for the develop-

ment of parallel acquisition, along with one of the most representative reconstruction procedures

associated with this technique. Finally, several limitations of current reconstruction approaches are

pointed out.

1.1 Magnetic resonance imaging

MRI is an imaging technique used primarily in medical applications to produce high quality images

of cross sections of the human body. MRI is based on the principles of nuclear magnetic resonance

(NMR), a spectroscopic technique that can be exploited to obtain microscopic chemical and phys-

ical information about molecules.

Magnetic resonance imaging is made possible by the reaction of certain nuclei in the human body

to magnetic fields. Every nucleus with uneven atomic mass or uneven atomic number has a non-

zero spin which induces a magnetic field. The magnetic moments produced by individual nuclei

are usually randomly oriented and produce no net magnetic effect. It is possible, however, to align

them in a certain direction by applying a static magnetic field. Each nucleus can be thought of as

a tiny magnetic dipole oriented parallel or antiparallel to the external field.

The alignment of the magnetic moments with the magnetic field is not perfect. Instead, there is a

precession movement called Larmor precession around the axis of the field. The rate of precession

is determined by the specific characteristics of the nucleus involved and the strength of the external

magnetic field. The expression for the angular frequency is:

2



Chapter 1. Parallel Magnetic Resonance Imaging

ω0 = γB0 (1.1)

γ is a constant called gyromagnetic ratio, which depends on the nucleus, while B0 is the applied

static magnetic field. ω0 is the Larmor frequency, a resonance frequency at which energy can be

efficiently transferred to the system.

The difference between the energy of the parallel (lower energy) and antiparallel (higher energy)

orientation of the nuclei produce a net magnetization of the set of atoms affected by the field. This

net magnetization depends on the strength of the external field and on the temperature.

If the nuclei are irradiated with a short burst of radio waves at the Larmor frequency, they absorb

energy and are tilted away from the axis of net magnetization. After a certain time, they return

to their former positions, emitting the absorbed energy in form of electromagnetic radiation. The

resulting signal, which can be detected as induced currents by a receive coil, can then be processed

to reconstruct an image. Some of the most relevant details of this procedure are explained in the

next section.

1.2 Spatial encoding and k-space formalism

Image reconstruction from magnetic resonance signals is based upon what is known as spatial encod-

ing. Spatial encoding can be implemented by exploiting the relation in Eq. 1.1 between the Larmor

frequency at which nuclei resonate and the static magnetic field. By modifying the magnetic field

it is possible to introduce variations in the resonance frequency which depend on the position of

the resonating nuclei, thus encoding the location of the nuclei within the signal.

In two dimensional imaging, for instance, it is necessary to make sure that the signal received

by the coil is irradiated only from protons belonging to a certain plane. In order to achieve this,

an additional component is added to the static magnetic field. This component, the slice selection

gradient, has a constant gradient that is perpendicular to the selected imaging plane. In MRI termi-

nology, gradient frequently refers to a magnetic field with a constant gradient in a certain direction.

As a result of the application of the slice selection gradient, the different planes react only when

irradiated at their specific Larmor frequency, which varies linearly in the slice selection axis. The

measured signal for an irradiation at a given Larmor frequency corresponds consequently only to a

certain plane. This procedure is illustrated in Fig. 1.1.

Within the imaging plane two additional mechanisms based on the same principle are employed:

frequency and phase encoding. Frequency encoding involves the application of another magnetic

3



Chapter 1. Parallel Magnetic Resonance Imaging

Figure 1.1: Selection of the imaging plane in the z direction by adding a constant gradient to the

static magnet field B0.

gradient (in the MRI sense) in the direction of a certain axis x contained in the imaging plane

during signal acquisition. This makes the oscillation frequency of the MR signal linearly dependent

on its x coordinate. The applied magnetic field can be expressed in this form:

B = B0 + Gxx (1.2)

where Gx is the magnitude of the gradient. As a result, according to Eq. 1.1, the signal dS obtained

from an infinitesimal interval dx at a time t will be:

dS(x, t) = ρ(x)e−iγ(B0+Gxx)tdx (1.3)

ρ(x) designates the proton density for a certain value of x. It must be noted that this expression is

simplified for notational convenience and does not include relaxation effects.

The second mechanism, which incorporates spatial information into the signal, is quite similar.

In this case, it is the phase of the signal, rather than the frequency, which is modified by adding

yet another gradient Gy, contained in the imaging plane and perpendicular to Gx. This gradient

is turned on when the irradiation signal is emitted and then turned off after a short interval of

time T . As a result, a linear dependence is induced between the y coordinate and the phase of the

signal. After the interval, the signal will have accumulated a phase difference of γ Gy y T . Taking

into account both spatial encoding techniques, the signal received at time t can be expressed as:

S(t) =

∫
ρ(x, y)e−iγ(B0t+Gxx t+Gyy T )dx dy (1.4)
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Chapter 1. Parallel Magnetic Resonance Imaging

ρ(x, y) is the spatial dependent proton density function which corresponds to the two dimensional

image that is to be reconstructed. After demodulation, which eliminates the e−iγB0t factor, the

following expression is obtained:

S(t) =

∫
ρ(x, y)e−iγ(Gxx t+Gyy T )dx dy =

∫
ρ(x, y)e−i(kxx+kyy)dx dy (1.5)

kx = γGxt and ky = γGyT can be interpreted as spatial frequencies. The received signal is con-

sequently equivalent to samples of the two dimensional Fourier transform of the proton density

at those frequencies. In MRI this spatial frequency domain is usually called k-space. Figure 1.2

shows a two dimensional MR image of a human brain and its k-space representation. Most of the

frequential information is concentrated around the centre of the k-space, so that in comparison the

outer regions seem almost completely black.

Figure 1.2: An image of the brain obtained by MRI (left) and its equivalent representation in

the spatial frequency domain or k-space (center). The k-space representation is also shown on a

logarithmic scale (right), where high frequency data are more visible.

If enough samples of the k-space are measured, the image can be reconstructed by applying a two-

dimensional inverse Fourier transform. According to Nyquist’s theorem, we can determine the image

field of view (an MRI term for the length of the image in a certain direction) xmax and resolution ∆x

by adjusting the spacing between the frequency samples ∆kx and the maximal acquired frequency

(kx)max:

xmax =
1

2∆kx
(1.6)

∆x =
1

2(kx)max
(1.7)

5



Chapter 1. Parallel Magnetic Resonance Imaging

ymax and ∆y can obviously be adjusted in an analogous way.

It is important to note that the spatial encoding scheme just described corresponds to a what is

usually denominated a cartesian sampling of the k-space, since the measurements are equivalent to

sampling the spatial frequencies of the image on a regular cartesian grid. Other trajectories, such

as radial or spiral, are possible, but their description is out of the scope of this brief introduction

to spatial encoding.

In order to make clear the need for acceleration techniques such as those presented in the following

section, it is useful to picture the trajectory we follow when sampling the MR signal after a radio

frequency signal excitation. On the one hand, kx changes linearly with time, on the other, ky

remains fixed, since it only depends on the initial period T . As a result, for every excitation it is

only possible to cover a single straight line in k-space. In order to complete the sampling of the whole

k-space it will thus be necessary to carry out many additional excitations. After each excitation,

the read-out of a single signal takes approximately between 2 and 6 milliseconds. Since the nuclei

must return to equilibrium before a new excitation can be carried out, there is an additional delay

that ranges approximately between 10 milliseconds and 1 second. Even though more elaborate

measuring techniques, such as for example using spoiling gradients, can help to reduce these delays,

the repetition of excitations implied by phase encoding is the main time limitation for the whole

process of MR data acquisition.

1.3 Parallel MRI

As explained at the end of the previous section, the acquisition of MR images is slowed down by

the sequence of repeated measurements necessary for phase encoding. Long scans are inconvenient

for the patient and may result in degraded image quality, especially in applications such as cardiac

imaging. Reducing scan time is thus a major challenge in MR imaging research. This challenge has

been tackled with remarkable success by parallel MRI.

Parallel MRI involves simultaneously sampling the signal with several coils, instead of just one.

This makes it possible to obtain an image of similar quality with less samples, since the data from

the different coils can be combined to make up for the missing information. If the data were re-

constructed directly, the violation of Nyquist’s limit would produce aliasing artifacts consisting

of multiple superpositions of the image. As we will see, using n coils makes it possible, at least

theoretically, to use n times less samples, eliminating the artifacts by exploiting redundant infor-

mation from the different coils. In practice, this means that for arrays with 8 coils, for example, it

is possible to obtain good quality images 5 or 6 times faster than in the case of conventional MRI.

Since it is the phase-encoded direction that is more costly in terms of measuring time, the data is

6



Chapter 1. Parallel Magnetic Resonance Imaging

usually only subsampled in this direction.

The effect of measuring with several coils is modeled in the following way. Each of the coils receives

a different signal, which can be interpreted as the original signal multiplied by the particular

sensitivity function of the coil sc(x, y). After demodulation, the signal Sc received by a certain coil

c can be expressed by the formula:

Sc(kx, ky) =

∫
sc(x, y)ρ(x, y)e−i(kxx+kyy)dx dy (1.8)

Figure 1.3 shows examples of sensitivity functions and the effect they have on the acquired data.

Figure 1.3: Coil sensitivity functions (left) and coil images of a human brain (right) obtained with

a 6-coil array.

This can be interpreted as a yet another encoding of spatial information: sensitivity encoding. Al-

gorithms for parallel MRI reconstruction use sensitivity encoded information to recover the original

signal from subsampled data. Two examples of such algorithms are explained in the next two sec-

tions. The first is of limited practical utility, but can be used to illustrate the main ideas underlying

this kind of reconstruction. The second is one of the most widespread and successful algorithms in

parallel MRI.

1.3.1 Localised Sensitivity Functions

This section focuses on the case of coil sensitivities that are restricted to a certain area of the image.

If the sensitivity function of a coil is localised enough, the aliasing artifacts caused by subsampling

will not affect the section of the image measured by that coil. This makes it possible to perform

the reconstruction by directly combining the images from the different coils, which correspond to

replicated localised sections of the original image. Figure 1.4, taken from reference [2], illustrates

the PILS (Partially Parallel Imaging With Localized Sensitivities) algorithm proposed by Griswold

et al [6], which implements such a procedure.

7



Chapter 1. Parallel Magnetic Resonance Imaging

Figure 1.4: PILS reconstruction of an MR image subsampled at an acceleration factor of 2 and

measured with an array of 4 coils. (a) The four coil sensitivities. (b) Fully sampled reconstruction

of each coil image. (c) Undersampled reconstruction of each coil image. (d) Selection of image

segments which are free of aliasing. (e) Elimination of remaining artifacts. (f) Final reconstruction.

In general coil sensitivity functions are not strictly spatially localised, so parallel MRI algorithms

must perform more sophisticated operations on the data. Some of these algorithms use an explicit

expression of the sensitivity function, while others perform the reconstruction using only the sub-

sampled data. The following section describes the most representative example of the first kind of

algorithms.

1.3.2 SENSE

SENSE (SENSitivity Encoding), proposed by Pruessmann et al in 1999 [25], is the most widespread

reconstruction method based on a previously available estimate of coil sensitivities. SENSE recon-

struction unfolds the aliased coil images while maximizing the signal-to-noise ratio. In the case of

regular cartesian k-space sampling, the unfolding can be significantly reduced and efficiently imple-

mented [25]. In the more general case, the reconstruction process is equivalent to the solution of a

8



Chapter 1. Parallel Magnetic Resonance Imaging

linear system of equations, which can be efficiently carried out by an iterative algorithm [24]. This

subsection is dedicated to the second approach, which is of more relevance to the work presented

further on.

From now on, the proton density function ρ will be replaced by its discrete approximation I, which

is precisely the image we wish to reconstruct. The sensitivity function for each coil will be assumed

to be known. In practice, they are either measured in a previous scan [25] or estimated from the

central k-space data [22]. As we will see further on, this may introduce errors in the reconstruction.

Using a linear algebra framework, MRI undersampled data can be expressed as the result of applying

two linear transformations to the original image. As implied by Eq. 1.8, these transformations

are sensitivity and Fourier encoding. Sensitivity encoding can be represented by a matrix S that

satisfies:

S(r,c),j = sc(r)δr,j (1.9)

where r is the pixel position, c the coil number, sc the sensitivity function for coil c and δi,j the

Kronecker delta, equal to one if i = j and to zero otherwise. The matrix dimensions are (nI nc) × nI ,

where nI is the number of pixels in the image and nc the number of coils. A matrix containing

the different coil images I can thus be obtained by multiplying S and I (in this formulation I is a

vector containing the nI pixels of the image):

I = S I (1.10)

The discrete Fourier transform of I can be expressed as a matrix product F I, where Fk,r = ei2πkr

and k and r respectively span the k-space and the image space. The matrix is consequently of size

(nI nc) × (nI nc). Subsampling of the k-space, which results in missing values for certain k-space

positions, can be represented as the effect of multiplying the complete Fourier transform of the data

F I by a projection matrix P . P is obtained from a diagonal matrix with nd ones in the positions

that correspond to sampled k-space values and zeros elsewhere. If we eliminate the rows of the

matrix which are equal to zero, we obtain the nd × (nI nc) matrix P . nd is the total number of

k-space measurements for all coils. In this way, we obtain an expression of the data d measured by

the MR coils as a linear transformation E of the image:

d = P F S I = E I (1.11)

This system of equations is a discrete approximation of Eq. 1.8. The whole encoding scheme that

models the linear transformation between the image and the subsampled data used for reconstruc-

tion is illustrated in Fig. 1.5.

9



Chapter 1. Parallel Magnetic Resonance Imaging

Figure 1.5: Example of parallel MRI encoding for an array with 6 elements and an acceleration

factor of 4. The image I is weighted by the coil sensitivities S I, transformed into the frequency

domain (F S I) and subsampled (P F S I). S I is represented by the 6 coil images, while F S I and

P F S I are represented by the respectively fully sampled and undersampled k-space representations

of the single coil images.
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In the reconstruction process, there are nI variables to be determined, namely the number of pixels

in the image that correspond to the desired resolution and field of view, while the number of

equations is nd nc. In order for this system not to be underdetermined, there is an obvious upper

bound on the subsampling factor R = nI

nd
:

R ≤ nc (1.12)

In general, noise affecting real MR images is well simulated as Gaussian noise. Under such an

assumption, the acquired data d̂ is corrupted by a vector η of zero mean:

d̂ = d + η = E I + η (1.13)

If we consider a sample noise matrix Ψ̂, describing the level of stochastic noise in signal samples,

the weighted square distance between the measured data d̂ and the noiseless data d would be:

(d̂ − d)HΨ̂−1(d̂ − d) = (d̂ − E I)HΨ̂−1(d̂ − E I) (1.14)

Deriving this expression and setting the derivative to zero we can obtain the image estimator which

minimizes it:

Î = (EHΨ−1E)−1EHΨ−1d (1.15)

Under the assumption of equation 1.13, this estimator is also the maximum likelihood estimator of

I. If we consider that the noise has a constant variance and is uncorrelated, the correlation matrix

is equal to the identity matrix. In this case, the reconstruction process is equivalent to calculating

the following least squares estimator:

Î = arg min
I

‖d̂ − E I‖2 (1.16)

In [24] Pruessmann et al propose calculating estimate 1.15 for arbitrary k-space trajectories with a

preconditioned conjugated gradient algorithm, which exploits the fact that the product E I can be

implemented efficiently as a pixel by pixel multiplication of the sensitivity functions and the image

followed by the application of the Fast Fourier Transform algorithm. This approach is commonly

known as Generalized SENSE (GSENSE). Since its publication, SENSE has proven extremely

successful and is at present widely used in clinic applications. There are, however, some limitations

to the technique which will be explained in the following section.

1.3.3 Limitations of Linear Reconstruction Techniques

In this section, the principal limitations of the SENSE reconstruction will be outlined. Special

attention will be paid to the fact that these limitations generalize to the main alternatives to

SENSE, since they too are based on linear reconstruction schemes. This suggests that in order to

11



Chapter 1. Parallel Magnetic Resonance Imaging

further improve reconstruction quality, it will be necessary to turn to nonlinear image reconstruction

techniques.

Noise Amplification

For high accelerating factors, SENSE reconstruction suffers from noise amplification, which degrades

image quality. The reason for this is that the system of equations 1.11 becomes increasingly ill-

conditioned. As a result, any errors present in the data have a large influence on the reconstruction

results. In this case, the reconstruction procedure is an ill-posed inverse problem, which must be

solved by introducing a priori information in the form of regularization. An example of such an

approach is Tikhonov regularization [14], which places a penalty on the l2 norm of the solution.

Assuming uncorrelated white Gaussian noise, the modified estimator is:

Î = arg min
I

‖d̂ − E I‖2 + λ‖I‖2 (1.17)

where λ is a constant which represents the relative importance of each of the terms in the recon-

struction.

Sensitivity Estimation

A further drawback of SENSE is the need for a prior estimation of the coil sensitivity functions. As

mentioned before, this estimate can be obtained from a previous low resolution scan [25], in which

the signal of each coil is divided by a reference signal obtained with a body coil which has almost

uniform sensitivity. The accuracy of the reference scan is logically critical for SENSE image recon-

struction quality. If the coil array or the patient move between the reference scan and the actual

acquisition, the sensitivity function will change and the estimation error will produce artifacts in

the reconstruction. The additional reference scan not only takes time, but is consequently also a

potential source of reconstruction errors.

So-called autocalibrated sensitivity estimates can be obtained directly from the MR data [22]. A

central region of k-space, consisting of a certain number of autocalibration signal (ACS) lines, is

completely sampled and then used to extract an approximation to the sensitivity by dividing each

of the low frequency coil images by their sum of squares. Although the frequential representation

of sensitivity functions is concentrated near the k-space center due to their regularity, this is not

necessarily the case for their convolution with the image (the Fourier space equivalent of point to

point multiplication in the image space). Furthermore, the absence of a reference body coil image

also affects the quality of the estimation. Thus, this estimation procedure is far from optimal and

is also a source of quality degradation in the reconstruction.
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Finally, other parallel MRI algorithms try to exploit sensitivity encoding in an implicit way. The

best known example is GRAPPA (Generalized autocalibrating partially parallel acquisitions) pro-

posed by Griswold et al [7]. GRAPPA reconstructs the original k-space representation of the image.

The basic underlying idea is that the missing points in the undersampled k-space data of each coil

can be calculated by a linear combination of neighbouring samples from all the coils. The coef-

ficients for the linear combination are fitted using a small number of ACS lines. Intuitively, it is

mainly the ACS lines that are responsible for supplying information about the sensitivity functions.

As a result, for similar reasons as in the self-calibrated approach, this information does not suffice

to fully characterize the coil sensitivities.

Figure 1.6: GSENSE (top) and GRAPPA (bottom) reconstructions of a human brain image from

k-space data acquired with an array with 6 elements and undersampled by a factor of 2 with 4

additional ACS lines (left) and by a factor of 4 with 12 additional ACS lines (right).

Figure 1.6 shows some examples of aliasing artifacts in linear reconstructions of data acquired with

an array with 6 elements, caused by an inaccurate sensitivity estimation in the case of GSENSE and

by an insufficient number of ACS lines in the case of GRAPPA. As we can see, for an acceleration

factor of 4 the reconstruction is severely degraded. A way to overcome this limitation could be to

estimate the coil sensitivities using all available k-space information. Such an estimate, however, is

not possible in the framework of a linear reconstruction where sensitivities are estimated a priori

(GSENSE), through low-frequency data (self-calibrated SENSE) or not at all (GRAPPA). This is

the main motivation for the development of the nonlinear algorithms presented in further chapters.
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Compressive Sampling

Most of the signals we encounter in real life, such as photographs or videos, are highly compress-

ible. This follows from the fact that it is possible to find a certain transform domain where their

representation consists of a small number of nonzero coefficients. In most applications, data are

first fully acquired and then compressed by transforming them into the sparsifying domain and

discarding negligible coefficients. In this way they can be stored and processed more efficiently. A

seemingly näıve question might be if we could not just acquire the relevant coefficients directly,

instead of carrying out the usually large number of redundant measurements.

At a first glance this idea might seem of little practical use. In general, we do not know which of

the coefficients carry the information and which do not. A random measurement of a small number

of coefficients in the sparse base, for example, would almost surely yield an overwhelming majority

of zeros and miss most of the valuable nonzero coefficients. Without knowing the position of the

relevant coefficients beforehand, the task of reconstructing the whole signal by taking a small num-

ber of samples appears to be hopeless. In fact, this is not the case. The recently developed theory

of Compressive Sampling or Compressed Sensing [4] describes how sparse signals can be sampled

at rates significantly below the Nyquist limit and then accurately reconstructed.

In the first section of this chapter, a brief theoretical description of Compressive Sampling is pre-

sented. In the following section, the application of Compressive Sampling techniques to MRI is

discussed, paying special attention to several difficulties that arise from practical considerations,

some of which are yet to be overcome.
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2.1 Theory

2.1.1 Synthesis and Measurements

The general framework of Compressive Sampling is based upon what Emmanuel Candès and Ter-

ence Tao, two of the pioneers of the theory along with Dave Donoho, call a synthesis/measurement

pair [4]. Measurements will be considered to be linear transformations of the data. A matrix A

represents the set of linear functionals responsible for extracting the measurement vector y from

the original data x:

y = Ax (2.1)

A defines the transformation of the data to the measurement domain. The synthesis domain, on the

other hand, is a certain transform domain in which the original signal x is assumed to be sparse.

This means that most of the coefficients θi of the representation of x in a basis of that transform

domain θ(x) will be equal to zero. This condition can be expressed as a bound on the l0 norm

(which is equal to the number of nonzero components in a vector) of θ(x):

‖θ(x)‖l0 ≤ K (2.2)

where K is an upper bound for the number of nonzero coefficients.

The sparsity of the signal in the synthesis domain is the first condition for an accurate reconstruc-

tion. The second condition is that the synthesis/measurement pair must be sufficiently incoherent,

in the sense that basis vectors of one domain cannot sparsely represent basis vectors of the other.

From an intuitive point of view, the information which is concentrated in just a few coefficients in

the synthesis domain must be as spread out as possible in the measurement domain, so it can be

retrieved from just a few measurements. This second condition is formalized by Candès and Tao

through the Exact Reconstruction Principle and the Uniform Uncertainty Principle [4].

2.1.2 Signal Reconstruction

Once the two conditions are satisfied, reconstructing the signal x amounts to finding a vector which

is sparse in the synthesis domain and at the same time is coherent with the available data in the

measurement domain. Compressive Sampling achieves this through an optimization procedure.

The ideal way of reconstructing a signal satisfying condition 2.2 from measurements modeled by

Eq. 2.1 would be to minimize the l0 norm of θ(x′) with the additional constraint that y = Ax′.

Unfortunately, this optimization problem is not computationally tractable. An alternative could be

to minimize the synthesis representation of the signal in another norm, such as l2. Unfortunately,
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l2 norm minimization, despite having been widely and efficiently applied, is of little use for our

problem since it does not favour sparse solutions.

An adequate compromise between solution sparsity and computational considerations is the l1

norm. Unlike l2 norm minimization, l1 norm minimization favours sparsity. An intuitive explana-

tion for this is that it penalises solutions with a few large components less than others with a large

number of small components. l2 minimization has exactly the opposite effect and consequently

favours dense solutions. Another advantage of l1 norm minimization, in particular when compared

to l0 norm minimization, is that it can be solved efficiently. It can, for instance, be reformulated as a

convex quadratic program, which can then be tackled by several standard optimization techniques

such as interior-point methods (for a recent implementation of such an approach, see [10]).

As a result, the Compressive Sampling reconstruction procedure is implemented by solving the

following constrained l1 norm optimization problem:

arg min
x′

‖θ(x′)‖l1 subject to y = Ax′ (2.3)

In [4], Candès and Tao prove that the solution of this problem is an exact reconstruction of the

original signal x with overwhelming probability, when the number of samples exceeds the number

of sparse coefficients in the synthesis base by a certain amount. If the original signal is sparse, this

results in an accurate reconstruction from a number of samples well below Nyquist’s sampling limit.

2.1.3 Lossy Reconstruction

Compressive sampling results can be extended to cases where the signal to be reconstructed is not

completely sparse. It is enough for the signal to be compressible, which means that its energy must

be concentrated in the largest coefficients of its synthesis domain representation.

This assumption is much better adapted to practical situations than strict sparsity, which is fre-

quently too constraining a condition for real-life signals. The basic idea is the same as that under-

lying lossy compression algorithms such as JPEG [30]: the largest coefficients in a certain domain

(discrete cosine transform or wavelet in the case of JPEG and JPEG 2000 [1]) can be selected and

the rest discarded to yield a very accurate approximation of the signal. It is interesting to note that

such an approximation is nonlinear, since it is the result of projecting the signal not on a subspace

formed by preselected base vectors, but on a subspace which is dependent on the very structure of

the signal. As discussed for example in Ch. 9 of [21], such simple nonlinear schemes are frequently

more efficient than the best possible linear approximation.

A possible way of describing compressible signals is that the size of their synthesis domain represen-

tation coefficients must follow an exponential decay. If this condition is satisfied, the Compressive
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Sampling reconstruction is surprisingly robust. In fact, in [4] the authors prove that it is hardly

possible to do any better, in the sense that the reconstruction is practically as accurate, in terms

of l2 norm approximation error to the original signal, as choosing the largest sparse domain coeffi-

cients a posteriori. Intuitively, this means that Compressive Sampling is capable of automatically

acquiring a compressed representation of the signal.

Practical applications of Compressive Sampling are increasingly varied and abundant. The next

section focuses on its application to MRI, which has been particularly promising. There are, how-

ever, some practical problems, related to the specific characteristics and constraints of MR data

reconstruction and acquisition, which must be overcome if Compressive Sampling MR imaging is

to become a practical alternative to the reconstruction methods currently in use.

2.2 Application to MRI

The application of Compressive Sampling techniques to MRI was suggested from the very begin-

ning (see for example Sec. 1.7 of [4]). The reason is that both key requirements for the Compressive

Sampling reconstruction process are at least partially satisfied. On the one hand, MR images have

been shown to be sparse in certain transform domains such as the finite differences or the wavelet

domain. On the other hand, the k-space domain in which MR data is encoded has been proven to

be incoherent with those transform domains for some sampling trajectories.

In the notation of Sec. 2.1.1, a Compressive Sampling reconstruction of MR data can be described

as follows: The signal x is the image corresponding to the proton density of a certain area of the

body, as explained in Chap. 1, and the data y is the undersampled k-space representation of the

image measured by a MR scan. The measurement matrix A is determined by the k-space sampling

scheme. It can consequently be represented by the product of the Fourier operator F and the

projection matrix P (as in Sec. 1.3.2, P can be obtained from a diagonal matrix with ones at the

positions that correspond to sampled k-space values by eliminating the zero rows): A = PF .

2.2.1 Sparsity of MR Images

In order to apply Compressive Sampling to MR data, it is necessary for the images to be sparse

in a certain transform domain Θ. In Ref. [18], angiograms (images of blood vessels) are shown to

be sparse in the spatial finite-difference domain (they even look quite sparse in the image domain),

while brain images are shown to be sparse in the wavelet and discrete cosine transform domains.

Applications to dynamic MR imaging which exploit sparsity in the time domain have also been

developed [19].

It is important to emphasize the difficulty of evaluating the quality of compressed medical images.
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The main problem is that the basic criterion, whether the images are useful for clinical diagnosis,

is rather subjective. This makes it particularly complicated to decide if a certain approximation,

obtained by truncating the representation of the image in a certain base, is acceptable or not. In any

case, the diagnostic quality of MR images obtained by Compressive Sampling has already proven

comparable and in some cases even superior to those obtained by other reconstruction methods [18].

2.2.2 Domain Incoherence in MRI

The second step in applying Compressive Sampling to MR image reconstruction to ensure that

the sparsifying transform domain is incoherent with the measuring scheme. In Ref. [4], random

projections of Fourier transform matrices are proven to be incoherent with the image domain.

Intuitively, the reason for this is that whereas regular undersampling produces a low number of high

energy coherent aliasing artifacts, random undersampling aliasing artifacts are highly irregular and

similar to background noise. Figure 2.1 illustrates the effects of regular and random undersampling

of a brain MR image on the shape and distribution of the aliasing artifacts.

Figure 2.1: Aliasing artifacts caused by a twofold undersampling in the case of regular cartesian

undersampling (left) and random irregular undersampling (right).

Measuring Incoherence

The notion of incoherence between the image and frequential domains can be formalized and quan-

tified by the point spread function (PSF) of the Fourier sampling scheme. For a certain basis vector

ei in the image domain, equivalent to a pixel, this function is defined as:

PSF(i, j) = e∗j (P F )H P F ei (2.4)

This function measures the effect of the aliasing generated by the pixel ei on another pixel ej . For a

regular undersampling by a factor R, the point spread function consists of R regularly spaced delta

functions, so that it is impossible to identify the original point. For a random undersampling scheme
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of the same factor, the point spread function spreads irregularly in a noise-like fashion through all

of the image space. If R is not too high, the original point will still be recognisable. Figure 2.2, taken

from [20], shows several point spread functions which illustrate the varying degrees of incoherence

between the image and k-space domains for different sampling schemes.

Figure 2.2: PSFs of various sampling trajectories: (a) random lines in 2-D, (b) random points in

2-D or cross section of random lines in 3-D, (c) radial, (d) uniform spirals, (e) variable density

spirals, and (f) variable density perturbed spirals. The height of the red lines measures coherence.

In [18] and [20] Lustig et al present a generalization of the point spread function: the Transform

Point Spread Function (TPSF). The TPSF measures how each coefficient in the sparsifying trans-

form representation of the image affects the other coefficients. If we denote by Θ the sparsifying

transform matrix, the formula of the TPSF which quantifies how a certain coefficient i affects

another coefficient j, would be given by:

TPSF(i, j) = e∗j Θ (P F )H P F ΘH ei (2.5)

In order to ensure an effective reconstruction of the MR data, the projection matrix P must sample

k-space such that TPSF coherence is minimized . Ideally the TPSF should be as similar to a delta

function as possible, so that the energy of each nonzero sparse base coefficient leaks as little as

possible into the other coefficients. This optimal sampling scheme would be very similar to random

measurements, and indeed many of the initial results in Compressive Sampling reconstruction as-

sumed a completely random sampling scheme.

In practice, k-space sampling is greatly constrained by hardware and physiological considerations.

In general, sampling trajectories must follow relatively smooth lines and curves and be robust,
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since non-cartesian sampling can be highly sensitive to system imperfections. This makes it almost

impossible to apply purely random trajectories. It is, however, still possible to achieve significant

incoherence as can be seen in Fig. 2.2 through the use of non-cartesian sampling schemes such as

radial or spiral trajectories.
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Joint Estimation of Image and Coil

Sensitivity Functions

As seen in Sec. 1.3.3, one of the main sources of image degradation in linear reconstruction algo-

rithms is an inaccurate estimation of coil sensitivities. This chapter presents the theoretical aspects,

implementation and reconstruction results of an algorithm proposed by Ying and Sheng in 2007 to

address this problem: Joint Image and Sensitivity Estimation in SENSE (JSENSE) [33].

3.1 Theory

3.1.1 Nonlinear Optimization Problem

In order to improve the accuracy of coil sensitivities used for image reconstruction, JSENSE seeks

to jointly estimate the image and the sensitivity functions during the reconstruction process. The

reconstruction problem is thus generalized to estimating not only the image I, but also the different

sensitivities represented by S, as in Eq. 1.10. The model which associates the unknown signals to

be reconstructed to the data is no longer linear:

d = P F M(S, I) (3.1)

M is a function which represents the pixel by pixel multiplication of the image and the coil sen-

sitivities. Applying a least squares approximation to obtain S and I in Eq. 3.1 would not yield

acceptable estimates of the image or the sensitivity functions, as the ensuing optimization problem

is not convex and has many local optima. This is easy to see, since we can generate any number of

useless solutions by simultaneously multiplying the image and dividing the coil sensitivities by an

arbitrary function.

The fact that this inverse problem is not well posed should not come as a surprise, since the num-

ber of parameters to be estimated is much larger than the available data. If the undersampling

21



Chapter 3. Joint Estimation of Image and Coil Sensitivity Functions

factor is R and the total number of measurements is equal to nd, R nd sensititivity pixels and R nd

nc

image pixels must be reconstructed from just nd samples. This means that there are R(nc+1)
nc

more

parameters than data points, making calibration impossible without additional a priori information.

Coil sensitivities are known to be regular functions, so that they are well represented by polynomial

models (see for example [25], where polynomial fitting is used to denoise sensitivity maps). Ying

and Sheng propose to use such a model to reduce the number of parameters in the inverse problem.

More precisely, the sensitivity sc of a coil c is represented by a two-dimensional polynomial function

centered at (x, y):

sc(x, y) =

np∑

i=0

np∑

j=0

ai,j,c(x − x)i(y − y)j (3.2)

The highest power np is chosen to be the same for both dimensions. The unknown parameters are

no longer the pixels of the coil sensitivities, but the coefficients of the polynomial functions. The

nonlinear transformation that models the sampled data is modified to:

d = P F Mp(a, I) (3.3)

where Mp represents the pixel by pixel product of the image I and the nc polynomial functions,

whose coefficients are represented by a vector a. Just as in the case of SENSE, the fact that noise in

MRI is well modeled as additive white Gaussian motivates a reconstruction based on least squares.

We will assume that the noise is uncorrelated and uniform (as we saw in Sec. 1.3.2, it is always

possible to introduce prior noise information in the form of a sample noise correlation matrix), so

that the estimator is the least squares solution to Eq. 3.3. Such a reconstruction is thus equivalent

to solving the following nonlinear optimization problem:

arg min
a,I

‖d̂ − P F Mp(a, I)‖2 (3.4)

From a theoretical point of view, the problem is overdetermined as long as the number of data

samples nd is superior to the number of parameters nI + (np + 1)2nc , which places a constraint on

the acceleration factor nf = nI

nd
:

nf ≤
nInc

nI + (np + 1)2nc
(3.5)

Because of the regularity of the sensitivity functions, low order polynomials are usually sufficient for

an adequate representation. The solution to 3.4 is a joint estimation of the image and polynomial

sensitivity functions that minimize the l2 norm error between the model and the data. The following

section explains how Ying and Sheng propose to calculate such a solution.
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3.1.2 Implementation of JSENSE

In order to solve Eq. 3.4, Ying and Sheng resort to a greedy iterative algorithm that alternates

between two separate steps. In the first step the image is updated according to the current value of

the coil sensitivities. In the second step, the coil sensitivities are updated according to the current

value of the image. As we will see in this section, this simplifies the problem to two subproblems

that are linear and consequently much easier to solve.

Image Update

The image update step is carried out by applying the Generalized SENSE reconstruction algorithm

explained in Sec. 1.3.2. If we fix the sensitivity values in Eq. 3.3, the equation is equivalent to

Eq. 1.16 and can be solved efficiently, for instance, by a conjugate gradient algorithm.

Sensitivity Update

The sensitivity update is a least squares fitting of each coil sensitivity given the undersampled data

from the corresponding coil and the estimated image. If we fix every variable in Eq. 3.4 except for

the sensitivity polynomial coefficients, we obtain the following linear problem:

arg min
a

‖d̂ − B a‖2 (3.6)

B is a matrix that combines a multiplication by the different powers of x and y, a multiplication by

the image, a transformation into the frequential domain and k-space undersampling. It can be seen

as a linear transformation which maps the polynomial coefficient representation to the measured

data. Its dimensions are thus nd nc × (np + 1)2 nc. Since the transformation maps the coefficients

of a coil sensitivity function exclusively to the data measured by that coil, the problem can be

decoupled into nc separate subproblems:

arg min
ac

‖d̂c − Bc ac‖
2 (3.7)

In order to do this, B is split into nc submatrices Bc of dimension nd × (np + 1)2. The elements of

these matrices are of the form:

Bc [(kx, ky), (p, q)] =
nx∑

x=1

ny∑

y=1

I(x, y)xpyqei2π(kxx+kyy) (3.8)

kx and ky are the k-space coordinates of the sampled data, x and y the image coordinates and p and

q the powers in dimensions x and y associated to each coefficient. Eq. 3.6 can therefore be solved

by using the nc Bc matrices to separately fit the polynomial coefficients of each coil sensitivity, as

in Eq. 3.7. Many methods can be applied to obtain a solution, including conjugate gradients and

SVD decomposition.
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In the implementation carried out in this work, the method of choice to solve 3.7 was performing a

Cholesky decomposition of the (Bc)
HBc matrices to solve (Bc)

HBc ac = (Bc)
H dc. For high values

of np, this system of equations is close to singular, due to the fact that there is more than one

combination of polynomial coefficients that fit the data equally well. This is a common problem in

least squares coefficient fitting (see for example Sec. 15.4 of [23]) and indicates that once a certain

order is reached, there is not much to be gained in terms of representation accuracy by increasing

the order of the polynomial functions. In order to alleviate the numerical instabilities caused by

this situation, a constant diagonal regularization matrix with a single value λ was added to the

matrix (Bc)
HBc, so that the minimized cost function was:

arg min
a

‖d̂ − Bc a‖2 + λ‖a‖2 (3.9)

Intuitively, the extra term avoids the appearance of fitted coefficients with very large magnitudes

that cancel each out producing unstable solutions [23]. The global cost function is thus slightly

modified to incorporate the regularizing term:

arg min
a,I

‖d̂ − P F Mp(a, I)‖2 + λ‖a‖2 (3.10)

3.1.3 Initialization

The greedy algorithm used to solve Eq. 3.10 must be initialized by an estimate either of the image

or of the coil sensitivity functions. Coil sensitivities obtained from a low resolution scan or a self-

calibrated approach, which are usually used to perform SENSE reconstructions, can both be used

as an initialization for JSENSE.

3.2 Methods

3.2.1 Algorithm Implementation

The method described in Sec. 3.1.2 was implemented in C. The GSENSE preconditioned conjugate

gradient algorithm proposed in Ref. [24] was implemented for the image update. The sensitivity

update was implemented by solving Eq. 3.9, as described in Sec. 3.1.2.

In the case of the image update, the inner iterative optimization step was stopped when the mag-

nitude of the cost function gradient, normalized by the magnitude of the data vector, fell below

a threshold of 10−4 or when the number of iterations reached 100. In the last outer iteration the

stopping threshold was lowered to 10−7. For some of the reconstructions higher acceleration factors,

the final image was affected by the noise amplification problems mentioned in Sec. 1.3.3. In these

cases, Tikhonov regularization, as in Eq. 1.17, was applied to improve the final reconstruction by

performing a last regularized GSENSE iteration with the final estimate of the coil sensitivities.
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3.2.2 Data Sets

In order to test the performance of the algorithm, tests were carried out with three different data

sets. In each case, the k-space was fully sampled and then artificially subsampled before applying

the reconstruction algorithm.

SIM Data Set

The first data set, which from now on will be referred to as SIM, was obtained by simulation.

A measured reference phantom image with size 256×256 was multiplied by a set of simulated

complex coil sensitivity functions and transformed into the frequential domain. The simulated coil

array consisted of nc = 6 circular receive coils, surrounding the cylindrical phantom without overlap.

The complex sensitivities of these coils were calculated using the Biot-Savart law [9].

BR Data Set

The second data set, which from now on will be referred to as BR, consisted of in vivo measurements

of a human brain performed with a 1.5 T scanner. A custom-made six-element head phased-array

coil was used. A spin echo sequence was performed with the following parameters: FOV= 250 mm,

matrix= 256×256, TE= 5 ms, TR= 1000 ms, slice thickness= 6 mm. Fat suppression was applied.

A low resolution reference scan was performed to obtain low resolution images Il from the body coil

and Il,c from the 6-element phase array coil with a Cartesian acquisition. Coil sensitivity estimates

Sc were computed pixel by pixel in the following way:

Sc(x, y) =
Il,c(x, y)

Il(x, y)
(3.11)

PH Data Set

The third data set, which from now on will be referred to as PH, consisted of phantom measure-

ments performed with a 1.5 T scanner. A commercial eight-element head phased-array coil was

used. The eight elements were regularly spaced around the phantom. A spin echo sequence was

performed with the following parameters: FOV= 250 mm, matrix= 256×256, TE= 10 ms, TR=

195 ms, slice thickness= 5 mm.

Coil sensitivity estimates were obtained from a low resolution reference scan, as for the BR data

set.
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3.2.3 Experiments

Polynomial Fitting of Sensitivity Functions

The accuracy of the polynomial representation of coil sensitivities was evaluated by performing a

least squares fit of the fully sampled coil images for different values of the maximum polynomial

order np. Accuracy was quantified by the normalized root mean square error (NRMSE) between

the fully sampled coil images Ic and the product of the fitted polynomial sensitivity functions Sc

and the image I used for the fitting:

NRMSE =

√∑nc

c=1 ‖Ic − Sc I‖2

∑nc

c=1 ‖Ic‖2
(3.12)

In the case of SIM, the image I was the original one used to produce the data. In the case of BR and

PH, it was that of a SENSE reconstruction of the fully sampled data (in this case, the algorithm is

usually called CLEAR).

JSENSE Reconstruction

A JSENSE reconstruction was carried out for acceleration factors of 2 and 4, in the case of SIM and

BR, and of 2, 4 and 8 in the case of PH. The number of extra ACS lines was 4 for the acceleration

factor of 2, 6 and 12 lines for the factor of 4, and 14 and 28 lines for the factor of 8. Reconstructions

without ACS lines were also carried out. GSENSE with Tikhonov regularization and GRAPPA re-

constructions were carried out for each subsampling scheme (except for schemes without ACS lines

in the case of GRAPPA) as representative examples of standard linear reconstruction algorithms.

The coil sensitivities used to initialize the reconstruction process in the case of the measured data

sets BR and PH were the estimates obtained from the low resolution scan following Eq. 3.11. In the

case of the simulated data SIM, the simulated sensitivity functions used to produce the data set

were modified by translation and rotation to simulate a faulty estimation. Figure 3.1 shows both

the original and modified coil sensitivity functions.

No convergence criterion was fixed to stop the reconstruction algorithm. The l2 norm of the error

does not necessarily correspond to visual quality of the reconstruction, so it is problematic to de-

termine a systematic stopping criterion. The algorithm was simply allowed to run for 100 iterations

for all the reconstructions.

The regularization term λ in Eq. 3.10 was set heuristically by initializing it to a numerically neg-

ligible value, trying to perform the Cholesky decomposition and then doubling it each time the

decomposition proved to be unstable.
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Figure 3.1: Original coil sensitivities used to generate the SIM data (left) and modified coil sensi-

tivities used to initialize the JSENSE reconstruction for this data set.

In every case, the criteria to evaluate the reconstruction results included the final value of the

cost function in Eq. 3.4 and the regularized cost function in Eq. 3.10, both normalized by the

magnitude of the data vector. Two further measures were used to try to quantify the quality

of the reconstructions. The first measure was the normalized root mean square error (NRMSE)

between the normalized magnitude of the reconstructed coil images (ScI)n and the magnitude of

the normalized fully sampled coil images (Ic)n. In both cases the subindex n indicates normalization

by the maximum value of the magnitude, as in xn = x
maxi(|x|i)

The reconstructed coil images were

calculated as the product of the final reconstructed image I and sensitivity functions Sc:

NRMSEcoil images =

√∑nc

c=1 ‖ |(Ic)n| − |(ScI)n| ‖2

∑nc

c=1 ‖(Ic)n‖2
(3.13)

The second quality measure was the NRMSE between the magnitude of the final reconstructed

image Iref and the magnitude of a reference image I. This measure was also used in Ref. [33] to

evaluate the quality of reconstructions:

NRMSEreference image =
‖ |Iref| − |I| ‖

‖Iref‖
(3.14)

Once again, in the case of SIM, the reference image was the original one used to produce the data.

In the case of BR and PH, it was that of a CLEAR reconstruction of the fully sampled data.

It is important to point out that measures based on l2 norm errors, which are widely used, do

not necessarily correspond to visual quality, so that it is unavoidable to also perform visual ex-

aminations of the reconstructed images when assessing the performance of image reconstruction

algorithms.
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Finally, a further experiment was carried out with the SIM data set to evaluate the robustness of the

reconstruction method in the presence of noise. The simulated data from each coil was corrupted

with uncorrelated Gaussian noise with constant variance σ2. Different values of σ2 were used: 1010,

1011 and 1012. The signal to noise ratio in the k-space that corresponds to these noise levels is re-

spectively: 21.55 dB, 11.55 dB and 1.55 dB. JSENSE, GSENSE and GRAPPA reconstructions were

carried out for each of these simulated data sets. The criteria described in the previous paragraph

were again used to analyse the results.

In order to counteract the effect of noise amplification due to a bad conditioning of the underlying

linear system of equations, in the case of JSENSE and GSENSE, Tikhonov regularization, as

defined by Eq. 1.17, was applied. The value of the regularization parameter was the same for the

two algorithms, but was empirically varied for the different SNR values and undersampling schemes:

0.7 (SNR of 21.55 dB), 0.9 (SNR of 11.55 dB) and 1 (SNR of 1.55 dB) for an acceleration ratio of

2 with 4 ACS lines, and 0.3 (SNR of 21.55 dB), 0.4 (SNR of 11.55 dB) and 0.9 (SNR of 1.55 dB)

for an acceleration ratio of 4 with 12 ACS lines.

3.3 Results

3.3.1 Polynomial Fitting of Sensitivity Functions

Figure 3.2 shows the normalized root mean square error for the polynomial fitting of the coil

sensitivities of the three data sets with different maximum polynomial orders. For all three data

sets, higher polynomial orders yield more accurate fits. The fitting error for the simulated data

reaches a lower level (1%) than that of the two real data sets (around 5%), possibly due to the

presence of noise and to the fact that the real coil sensitivity functions are not as smooth as the

simulated ones.

3.3.2 JSENSE Reconstruction

Cost Functions

Figure 3.3 shows the final cost function and regularized cost function values for the JSENSE

reconstruction of the three data sets with different values of maximal polynomial order in the

sensitivity model and different undersampling schemes. In general higher polynomial orders yield

lower final values for both the regularized and non-regularized cost function, especially for the

SIM data set. Undersampling schemes with less data are fitted more exactly by the optimization

algorithm, so that higher acceleration factors with less number of ACS lines yield lower cost function

values. It is worth noting that this is not the case for the reconstruction of the SIM data set with

an acceleration factor of 4 with 6 ACS lines. This is possibly due to stability problems in the

convergence of the optimization procedure.
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Figure 3.2: Normalised RMS error of the coil sensitivity function polynomial representations for the

SIM (top), BR (center) and PH (bottom) data sets using different values of maximal polynomial

order.

Reconstruction Quality Measures

Figure 3.4 shows the final value of the two NRMSE criteria defined in Eq. 3.13 and 3.14 for the

JSENSE reconstruction of the three data sets. Reconstruction is carried out for different values of

different undersampling schemes and different maximal polynomial orders in the sensitivity model.

There does not seem to be a general pattern in the NMRSE measures for the different values of

maximum polynomial order. There is, however, a clear pattern which relates different undersam-

pling patterns to NMRSE measures. Lower acceleration factors yield lower NRMSE values. Also,

for the same acceleration factor, higher number of ACS lines correspond to lower NRMSE mea-

sures. As an example, in the reconstruction of the SIM data, better results were obtained for an
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Figure 3.3: Normalised cost function (left) and regularized cost function (right) values for the

JSENSE reconstruction of the SIM (top), BR (center) and PH (bottom) data sets for different

reduction factors (RF) and number of ACS lines. For the SIM and BR data sets: RF 2 ACS 0

(green), RF 2 ACS 4 (blue), RF 4 with no ACS lines (magenta), RF 4 ACS 6 (black) and RF

4 ACS 12 (red). For the PH data set: RF 2 ACS 4 (green), RF 4 ACS 6 (blue), RF 4 ACS 12

(magenta), RF 8 ACS 14 (black) and RF 8 ACS 28 (red).
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acceleration factor of 4 with 12 ACS lines (which corresponds to a total acceleration factor of 3.36)

than for an acceleration factor of 2 with no ACS lines.

In general, the results thus seem to suggest that denser grids with more ACS lines generate better

reconstructions. In some cases, such as acceleration factor 4 with no ACS lines for the SIM data

and both schemes with acceleration factor 8 for the PH data, high NRMSE values seem to indicate

very low quality reconstructions.

Visual Results

The image reconstruction results for data sets SIM, BR and PH are shown in Figs. 3.5, 3.7 and 3.9.

In each case the JSENSE reconstruction is compared both to a reference image and to regularized

GSENSE and GRAPPA reconstructions.

The visual results for JSENSE seem to confirm the NRMSE criteria results. Lower acceleration

factors result in better reconstructions, where aliasing artifacts are less visible. The same is true

of subsampling patterns with more ACS lines. For the SIM data set, in particular, the number of

ACS lines has a considerable impact on the suppression of aliasing artifacts. The number of ACS

lines necessary for the suppression seems to augment for higher acceleration factors. For a factor

of 2, 4 ACS lines suffice to eliminate almost all artifacts, while for a factor of 4 6 ACS lines are not

sufficient, but 12 are. In fact, the visual result for an acceleration factor of 4 with 6 ACS lines con-

firms that the optimisation algorithm does not converge adequately, resulting in an amplification

of the signal at one side of the image that completely degrades the reconstruction.

GSENSE results present more aliasing artifacts than JSENSE reconstructions for almost all accel-

erating factors. As for JSENSE, reconstruction quality is improved by lower undersampling ratios.

The impact of ACS lines, however, is much less important, and in no case leads to an artifact

suppression effect comparable to that of JSENSE. Results for the SIM data are of especially low

quality, due to the erroneous sensitivity function estimate used in the reconstruction.

Since GRAPPA does not rely on a sensitivity estimate, its results for the SIM data set present

almost no aliasing artifacts. For the BR and PH data, the reconstruction is of quite good quality

for an acceleration factor of 2, but presents heavy aliasing for higher factors. In all reconstructions,

when compared to those of the two algorithms using explicit sensitivity estimates, a certain inho-

mogeneity effect is noticeable. This is possibly a consequence of the low number of ACS lines used

in the reconstruction and of the sum of squares reconstruction of the image.

Coil sensitivity reconstruction results are shown in Figs. 3.6, 3.8 and 3.10, where the coil sensitivity

reconstructions are compared to the low resolution scan estimate and in the case of the SIM data
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set to the erroneous and original coil sensitivities. In the case of the SIM data, high quality image

reconstructions seem to correspond to well corrected sensitivity functions, which are very similar

to the original ones. This is the case for a reduction factor of 2 with 4 ACS lines and 4 with 12 ACS

lines. In the two other data sets, the corrected sensitivities are in general similar to the reference

scan estimates, with large differences only for undersampling schemes that yield low quality image

reconstructions (such as for an acceleration factor of 4 with no ACS lines for the BR data) and

small, yet detectable, differences for schemes that generate good quality images.

Convergence

Figure 3.11 shows the evolution of the different result evaluation criteria during the first 100 it-

erations of the JSENSE reconstruction for a subsampling scheme with an acceleration factor of

4 and 12 ACS lines. In all three data sets, the cost function and regularized cost function values

decrease sharply at first and then converge to a stable value after 4 or 5 iterations, except for the

functions corresponding to the simulated data which continued to decrease even after 100 iterations.

The behaviour of the NRMSE values for the SIM data is similar to that of the cost functions. It

decreases sharply at first and then more slowly, without completely converging to a stable value.

In the case of the BR and PH data, the NRMSE values do not seem to decrease noticeably. In fact,

in the case of the BR data they actually increase during the first iterations.

The seemingly puzzling behaviour of the NRMSE values can perhaps be explained by visual inspec-

tion of the intermediate results in Fig. 3.12. While in the SIM reconstruction no noise is present,

both the BR and PH data reconstructions suffer from noise amplification. This is especially evident

on the BR image. At the same time, the intermediate images show substantial aliasing artifact

suppression taking place in the first iterations. It is possible that both effects cancel out each other,

yielding NRMSE values which are not very representative of reconstruction quality. It is interesting

to note that the noise amplification effect seems to be restricted to the first iterations, so that

further JSENSE iterations do not seem to contribute to it. All of the presented images are inter-

mediate updates in the JSENSE reconstruction, so Tikhonov regularization has not been applied

to control noise amplification in any of them.

3.3.3 Noisy Data Reconstruction

Figure 3.13 compares the normalized cost function, regularized cost function and NRMSE results

at different values of k-space SNR for a reduction factor of 2 with 4 ACS lines and a reduction

factor of 4 with 12 ACS lines. The maximum polynomial order used in the sensitivity model was 9

in both cases. All of the cost functions and quality measures degrade at higher noise levels.
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The corresponding image reconstruction results are shown in Figs. 3.14 and 3.15, where they are

compared to GSENSE with Tikhonov regularization and GRAPPA reconstructions. In each case,

the same regularization value was applied to GSENSE and to the final image update of JSENSE.

In general JSENSE presents less artifacts than GSENSE for every noise level. The visual quality

of the reconstructions is worse at lower SNR values, where noise mainly affects the central regions

of the image. Tikhonov regularization alleviates this effect, but also lowers the intensity in those

regions.

Once again, since GRAPPA does not use a prior estimate of coil sensitivities, it presents substan-

tially less aliasing artifacts than the GSENSE reconstruction with the faulty sensitivity estimate.

In any case, some artifacts are present, in particular for an acceleration factor of 4, possibly due to

the lack of regularization and the reduced number of ACS lines. The inhomogeneity effect, possibly

caused by the sum of squares reconstruction and the reduced number of ACS lines, is again appar-

ent. However, when comparing it to the GSENSE and JSENSE reconstructions at high noise levels,

the effect of regularization and the degradation of the sensitivity estimate in JSENSE produces

similar inhomogeneities so that, in this case, the reconstruction quality of JSENSE and GRAPPA

is quite similar.

The final coil sensitivity reconstructions are shown in Fig. 3.16. In general, the estimate is still

corrected by the algorithm, although at higher noise levels the final estimate is less sharp and does

not approximate the original coil sensitivity functions as accurately as in the noiseless case. In fact,

the signal level towards the center of each coil sensitivity image becomes higher, relative to the

signal level at the borders, as the noise level increases. This may be one of the causes that generate

lower signal levels at the center of the final JSENSE image, producing the inhomogeneous effect

mentioned in the previous paragraph.
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Figure 3.4: NRMSE comparison to the fully sampled coil images (left) and to the reference image

(right) for the JSENSE reconstruction of the SIM (top), BR (center) and PH (bottom) data sets

for different reduction factors (RF) and number of ACS lines. For the SIM and BR data sets: RF

2 ACS 0 (green), RF 2 ACS 4 (blue), RF 4 with no ACS lines (magenta), RF 4 ACS 6 (black) and

RF 4 ACS 12 (red). For the PH data set: RF 2 ACS 4 (green), RF 4 ACS 6 (blue), RF 4 ACS 12

(magenta), RF 8 ACS 14 (black) and RF 8 ACS 28 (red).
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Original Image

RF 2 ACS 0 RF 2 ACS 4 RF 4 ACS 0 RF 4 ACS 6 RF 4 ACS 12

Figure 3.5: Image reconstruction of the SIM data set by JSENSE (second row), regularized GSENSE

(third row) and GRAPPA (bottom row) for different reduction factors (RF) and number of ACS

lines. The original image used to generate the data set is shown in the top row.

35



Chapter 3. Joint Estimation of Image and Coil Sensitivity Functions

Original Coil Sensitivities Erroneous Coil Sensitivities

PSfrag replacemen

RF 2 ACS 0 RF 2 ACS 4
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Figure 3.6: The top two images show the original coil sensitivities used to generate the SIM data set

(left) and the erroneous coil sensitivities used to initialize the reconstruction (right). The remaining

images show JSENSE reconstructions for different reduction factors (RF) and number of ACS lines.
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CLEAR Reconstruction

RF 2 ACS 0 RF 2 ACS 4 RF 4 ACS 0 RF 4 ACS 6 RF 4 ACS 12

Figure 3.7: Image reconstruction of the BR data set by JSENSE (second row), regularized GSENSE

(third row) and GRAPPA (bottom row) for different reduction factors (RF) and number of ACS

lines. At the top the fully sampled SENSE or CLEAR reconstruction is shown.
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Coil Sensitivities Initial Estimate RF 2 ACS 0

RF 2 ACS 4 RF 4 ACS 0

RF 4 ACS 6 RF 4 ACS 12

Figure 3.8: The top left image shows the low resolution scan estimate of the coil sensitivities for the

BR data set. The rest of the images show coil sensitivity reconstructions by JSENSE for different

reduction factors (RF) and number of ACS lines.
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CLEAR Reconstruction

RF 2 ACS 4 RF 4 ACS 6 RF 4 ACS 12 RF 8 ACS 14 RF 8 ACS 28

Figure 3.9: Image reconstruction of the PH data set by JSENSE (second row), regularized GSENSE

(third row) and GRAPPA (bottom row) for different reduction factors (RF) and number of ACS

lines. At the top the fully sampled SENSE or CLEAR reconstruction is shown.
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Coil Sensitivities Initial Estimate RF 2 ACS 0

RF 2 ACS 4 RF 4 ACS 0

RF 4 ACS 6 RF 4 ACS 12

Figure 3.10: The top left image shows the low resolution scan estimate of the coil sensitivities for the

PH data set. The rest of the images show coil sensitivity reconstructions by JSENSE for different

reduction factors (RF) and number of ACS lines.
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Figure 3.11: Evolution of the cost function (top left), regularized cost function (top right), NRMSE

comparison to the fully sampled coil images (bottom left) and NRMSE comparison to the reference

image (bottom right) during the first 100 iterations of a JSENSE reconstruction of the SIM (black),

BR (red) and PH (blue) data sets subsampled at a reduction factor of 4 with 12 ACS lines.
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Iteration 1 Iteration 21 Iteration 41 Iteration 61 Iteration 81

Figure 3.12: Evolution of the image reconstruction for some intermediate iterations of JSENSE for

the SIM (top row), BR (middle row) and PH (bottom row) data sets subsampled at a reduction

factor of 4 with 12 ACS lines.
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Figure 3.13: Normalised cost function (top left), regularized cost function (top right), NRMSE

comparison to the full sampled coil images (bottom left) and NRMSE comparison to the reference

image (bottom right) of the JSENSE reconstruction of the SIM data set with different values of

k-space SNR for a reduction factor of 2 with 4 ACS lines (red) and 4 with 12 ACS lines (blue).
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No Noise 21.55 dB 11.55 dB 1.55 dB

Figure 3.14: Regularized JSENSE (top row), regularized GSENSE (middle row) and GRAPPA

reconstructions of the SIM data set with different values of k-space noise variance for a reduction

factor of 2 with 4 ACS lines.
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No Noise 21.55 dB 11.55 dB 1.55 dB

Figure 3.15: Regularized JSENSE (top row), regularized GSENSE (middle row) and GRAPPA

reconstructions of the SIM data set with different values of k-space noise variance for a reduction

factor of 4 with 12 ACS lines.
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Original Coil Sensitivities Erroneous Coil Sensitivities
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Figure 3.16: The top row shows the original coil sensitivities used to generate the SIM data set

(left) and the erroneous coil sensitivities used to initialize the reconstruction (right). The other

figures show JSENSE coil sensitivity reconstructions for a reduction factor of 2 with 4 ACS lines

(left column) and a reduction factor of 4 with 12 ACS lines (right column) at different values of

k-space SNR: 21.55 dB (second row), 11.55 dB (third row) and 1.55 dB (bottom row).
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3.4 Discussion

JSENSE reconstruction relies on a nonlinear procedure that iteratively corrects the coil sensitivity

functions and the image of a parallel MRI SENSE model. For this, a two-dimensional polyno-

mial sensitivity model is used, which seems to provide a good equilibrium between representation

accuracy and an implicit regularization effect, which constrains potential solutions to be smooth

functions. JSENSE can also be interpreted as a unifying framework for reconstruction algorithms

relying on coil sensitivity estimates, like SENSE, and those that use ACS lines to exploit sensitivity

encoding, like GRAPPA.

The experimental results for a variety of examples presented in the previous section seem to show

that the method effectively exploits extra information encoded in the center of the k-space to

improve the accuracy of the sensitivity function estimate and suppress aliasing artifacts. When

compared to SENSE, JSENSE is able to perform better quality reconstruction due to sensitivity

correction, but needs a certain number of ACS lines to achieve this. When compared to GRAPPA,

JSENSE yields more accurate and homogeneous reconstructions for a similar number of ACS lines,

since it is able to exploit the whole measured k-space to correct the explicit sensitivity estimate.

Finally, sensitivity correction seems not to be severely degraded by the presence of noise. This is

possibly due in part to the regularization implicit in the polynomial model, which hinders the noise

from propagating and being amplified between JSENSE iterations.

A major limitation of the JSENSE algorithm is its computational complexity. Although the algo-

rithm usually attains good image quality after a few iterations, each of the iterations is very costly,

as it effectively includes a GSENSE reconstruction and a large polynomial fitting problem. Another

limitation is the fact that a moderately accurate initial sensitivity estimate is necessary to initialize

the reconstruction (this limitation is common to all algorithms based on a SENSE model). For

inaccurate initial estimates, a certain number of ACS lines are needed for adequate convergence.

Recently, the application of a variable projection method to the solution of the JSENSE nonlinear

optimization problem has been proposed to alleviate this problem [32].

Apart from increasing the computational efficiency of the nonlinear optimization problem, an in-

teresting extension to JSENSE would be to study the effects of applying Tikhonov regularization

within the inner image update, since this may yield more robust sensitivity estimates, and in gen-

eral the compatibility of JSENSE with other forms of regularization, which can be applied to the

SENSE reconstruction. Another possibility would be to use alternative models for the coil sensitivi-

ties within the JSENSE framework. Regularization of sensitivity solutions could then be performed

through the use of Sobolev norms as in [29], or the l1 norm of the sensitivity functions in a transform

domain, as is proposed in the following chapter.
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Chapter 4

Compressive Sampling of 2D Parallel

Magnetic Resonance Data

In this chapter, several Compressive Sampling approaches to the reconstruction of 2D parallel

MR images are presented and discussed. In particular, the possibility of improving coil sensitivity

function estimates by exploiting their sparse representation in the wavelet domain is explored.

4.1 Theory

4.1.1 Image Sparsity

The first step towards the application of Compressive Sampling to image reconstruction in MRI is

to make sure that the reconstructed signal has a sparse representation in a certain domain. The

sparsifying transforms which seem to be well adapted to MR images are spatial finite differences

and the wavelet transform [18].

Spatial finite differences are calculated as the difference between neighbouring pixels of an image.

The l1 norm of this transform is also known as Total Variation (TV ), as it is the sum of the

absolute values of all the local variations in the image. Sparse images in this domain tend to be

piecewise constant. With the exception of special cases like angiograms, in vivo MR images are

not well suited for a piecewise constant representation. However, adding a term of total variation

regularization has been shown to be useful in reducing artifacts while preserving image edges for

SENSE reconstruction of parallel MR data [15].

The wavelet transform W can be interpreted as a multiresolution analysis of the image, in which

each coefficient carries both spatial frequency and spatial position information. As we can see in

Fig. 4.1, some coefficients, placed in the upper left corner of the wavelet representation, contain

coarse details, while others chiefly correspond to fine-scale details. In most images, many of the fine-
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scale coefficients are practically negligible. As a result, the images are compressible in the wavelet

domain. This is indeed the case for many MR images.

Figure 4.1: Wavelet representation (center) of an MR phantom image (left). The wavelet represen-

tation is also shown on a logarithmic scale (right), where fine-scale coefficients are better visible.

MR images can consequently be considered as at least moderately sparse both in the wavelet

and in the spatial finite differences domain. In order to exploit this, the Compressive Sampling

optimization problem of Eq. 2.3 can be slightly modified to incorporate both sparsifying transforms.

A parameter α is introduced to calibrate the relative importance of each term. The resulting

extended optimization problem solved to perform the reconstruction is of the form:

arg min
I

‖W (I)‖l1 + α TV(I) subject to d̂ = P F I (4.1)

where d̂ is the MR data, F the Fourier transform matrix and P the projection matrix that describes

the k-space sampling pattern.

4.1.2 K-Space Sampling Grid Design

As discussed in Sec. 2.2.2, for a k-space sampling grid to be adequate for Compressive Sampling

reconstruction there must be sufficient incoherence between the measurement and the synthesis

domain. This condition can be tested via the TPSF of the sparsifying transform coefficients. In

the case of 2D Cartesian sampling, only the position of the phase-encoded lines must be chosen, as

data in the frequency-encoded direction are fully sampled. The distribution of these lines could be

adapted to maximize TPSF incoherence.

Such an approach would, however, not take into account the specific structure of image represen-

tations in k-space, which do not display a regular energy distribution. Quite on the contrary, the

energy is very concentrated in the center of k-space. Missing samples consequently have an effect on
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the final reconstruction which is strongly dependent on their position. This places an additional con-

straint on the design of the k-space sampling scheme, which should be significantly denser towards

the center. Fig. 4.2 shows the effects of uniform and variable density random k-space sampling in

the final reconstruction.

Figure 4.2: Compressive Sampling results for the reconstruction of a phantom for two different k-

space random sampling grids: a uniform random grid (top left) which produces a reconstruction with

low frequency irregularities (top right) and a variable density grid (bottom left) which generates a

more faithful reconstruction (bottom right). In both grids white points represent samples and black

points represent unsampled k-space positions.

Designing an optimal sampling grid in both respects is computationally not tractable. However,

following an approach proposed in Ref. [18], it is possible to find adequate sampling patterns by

a Monte Carlo approach. The basic idea is to generate a large number of different grids, analyse

them and choose the one which is most suitable for Compressive Sampling reconstruction. Let G

be an operator indicating whether a phase-encoded line y is sampled (G(y) = 1) or not (G(y) = 0).

In the design process, grids are generated by sampling each G(y) value from a probability density

function of the form:
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P {G(y) = 1}




∝ 1

|y−y|p if |y| > r

= 1 if |y| ≤ r
(4.2)

where y is the y coordinate of the k-space center, p a real-valued parameter which determines

how much denser the sampling is towards the center and r the radius of the central fully sampled

k-space. For each sampled grid, the TPSF of the sparsifying transform is calculated. Finally the

most incoherent grid among all those generated in this way is selected.

4.1.3 Compressive Sampling Sum of Squares Image Reconstruction

Probably the simplest and most direct way of applying Compressive Sampling to parallel MRI data

is separately reconstructing each of the coil images Ic by solving problem 4.1. The resulting nc

images can be combined to produce a Sum of Squares (SoS) reconstruction of the image, where

each pixel ISoS(x, y) is obtained as a combination of the corresponding coil image pixels Ic(x, y) in

the following way:

ISoS(x, y) =

√√√√
nc∑

c=1

Ic(x, y)2 (4.3)

4.1.4 Compressive SENSE Image Reconstruction

The SoS reconstruction described in the previous section takes into account coil sensitivity infor-

mation neither implicitly nor explicitly. However, if an estimate of the coil sensitivities is available,

it is possible to exploit it by incorporating the SENSE encoding model presented in Sec. 1.3.2 into

the Compressive Sampling reconstruction. Such an approach has been independently proposed by

several authors [11], [31], [34]. If both the wavelet and the spatial finite difference transforms are

selected as sparsifying transform domains, the resulting optimization problem solved during the

reconstruction is:

arg min
I

‖W (I)‖l1 + α TV(I) subject to d̂ = E I (4.4)

where E is the SENSE encoding matrix defined in Eq. 1.11, which includes the explicit expression

of the coil sensitivity functions, and α a constant that controls the relative importance of the

two sparsifying transforms in the reconstruction. From now on, we will refer to this algorithm as

Compressive SENSE or CSENSE.

4.1.5 Compressive Sampling Joint Reconstruction

In Chapter 3, we described JSENSE, an algorithm performing a simultaneous estimate of both the

MR image and the coil sensitivity functions. For some examples, JSENSE obtained better quality

images than algorithms dependent on linear estimates of MR images. In particular, it managed to
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correct inaccurate prior estimates of the coil sensitivities, which severely degraded the performance

of the SENSE algorithm. JSENSE depends on a polynomial model to represent the sensitivity

functions and on a greedy algorithm to perform the reconstruction. In this section, we propose an

algorithm which, like JSENSE, performs a joint reconstruction of the image and the coil sensitivi-

ties by solving a nonlinear optimisation problem.

Unlike JSENSE, the smoothness constraint on the possible solutions for coil sensitivities is not

applied through a preimposed model, but through a constrained l1 optimization problem, as in

Compressive Sampling. The main motivation for this approach is that coil sensitivities are gener-

ally smoothly varying functions, which can be compressed in a wavelet representation. This has

been exploited, for instance, to improve sensitivity estimates by applying wavelet denoising tech-

niques [12]. The resulting nonlinear optimisation problem, which must be solved to perform the

joint reconstruction, is of the form:

arg min
S,I

‖W (I)‖l1 + α TV(I) + λS ‖W (S)‖l1 subject to d̂ = P F M(S, I) (4.5)

where M(S, I) represents the pixel by pixel product of the image I and the sensitivity functions S,

and parameters λS and α weigh the different l1 terms to be minimized. The proposed method to

solve Eq. 4.5 is a greedy approach, which iteratively updates the image and sensitivity estimates.

Image Update

The image update is calculated by applying the CSENSE algorithm presented in Sec. 4.1.4. Equa-

tion 4.4 is solved for a matrix E formed with the current coil sensitivity function estimate.

Sensitivity Update

In order to calculate an estimate of the sensitivities, an image estimate is supposed to be known, as

in the sensitivity update of Sec. 3.1.2. An encoding matrix H can then be defined to represent the

linear transformation that maps the coil sensitivity function to the sampled data of that particular

coil. This transformation includes a pixel by pixel multiplication with the image I, an application of

the Fourier transform F and subsampling in the k-space domain, as defined by a projection matrix

P . For each coil c, the transformation can consequently be expressed as follows:

dc = P F I Sc = H Sc (4.6)

where, for convenience of notation, I denotes a diagonal matrix containing the image pixel values.

Exploiting the sparse representation of the sensitivity function in the wavelet domain, a Compressive
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Sampling framework can be applied to calculate the update. The sensitivity function of each coil

is consequently calculated as the solution of the following constrained optimization problem:

arg min
Sc

‖W (Sc)‖l1 subject to d̂ = H Sc (4.7)

In this case, it would be counterproductive to add a Total Variation regularization term in the op-

timization problem, since this would favour solutions with sharp edges instead of smooth functions.

4.2 Methods

4.2.1 K-Space Sampling Grid Design

In order to generate the k-space sampling grids, the Monte Carlo design technique described in

Sec. 4.1.2 was implemented. The TPSF of the wavelet transform was used to measure the inco-

herence of the different grids. The incoherence for a given coefficient wavelet coefficient xi was

quantified by the normalized difference between the TPSF maximum and the highest secondary

lobe:

Inc(xi) =
|TPSF(xi, xi) − maxi6=j TPSF(xi, xj)|

|TPSF(xi, xi)|
(4.8)

Calculating this value for each of the nI wavelet coefficients of each grid would be extremely inef-

ficient. It was empirically ascertained, however, that coefficients at the same resolution level had

very similar TPSF functions. It was thus decided to test only one of the coefficients for each level

in order to reduce the computational complexity of the design procedure.

The Monte Carlo procedure can be further optimized by exploiting the fact that finer level coef-

ficients are more limiting, as to domain coherence, than coarser level coefficients. This is a con-

sequence of the variable density sampling scheme. Coarse levels of detail tend to consist of low

frequency information, which is sampled more completely as described by Eq. 4.2. Fine level details

correspond to information encoded primarily in high frequency regions, which are undersampled

more severely. This suggests using Eq. 4.8 for an arbitrary coefficient at the finest detail level of the

wavelet multiresolution decomposition as a criterion to measure the incoherence of a given grid.

The optimized Monte Carlo procedure which was finally implemented consists of calculating the

measure given by Eq. 4.8 for each sampled grid at a certain fine level coefficient. When a sampled

grid proves to be more incoherent at that level than the previously sampled ones, lower coefficients

from each wavelet transform scale are tested to confirm that there is indeed less coherence at those

levels. This was repeated 105 times. Finally, the most incoherent grid was selected. In this way,

three grids were generated with 133, 73 and 36 fully sampled k-space lines. This corresponds to
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acceleration factors of 1.92, 3.51 and 7.11 respectively. More details about the selected grids for the

different acceleration factors can be found in App. A.1.

4.2.2 Algorithm Implementation

The different algorithms and methods described above were implemented in MATLAB. Wavelet

transforms were calculated using the WAVELAB library [5]. Daubechies 4 wavelets were selected

to implement the sparsifying wavelet transform for all reconstructions.

For the SoS reconstruction of coil images, Michael Lustig’s Sparse MRI software [17] implementing

a nonlinear conjugate gradient algorithm with a backtracking line-search was directly applied. Op-

timization problems 4.4 and 4.7 were solved by adding two operators to the implementation. In the

case of CSENSE, the new operator implemented the sensitivity encoding matrix E, as in Eq. 1.11,

and thus included pixel by pixel multiplication with the coil sensitivities before performing the

undersampled Fourier transform. In the case of sensitivity estimation, the operator implemented

the encoding matrix H, as in Eq. 4.6, and included pixel by pixel multiplication with the current

image estimate.

The optimization algorithm does not solve Eq. 2.3 directly, but rather minimizes a Lagrangian

representation of the problem, where the Lagrangian multiplier λ must be fixed a priori. This effec-

tively transforms the constrained problem of Eq. 4.1 into an unconstrained least squares problem

with an l1 regularization term:

arg min
I

‖d̂ − P F I‖l2 + λ ‖W (I)‖l1 + α TV(I) (4.9)

λ and α can be interpreted as regularization parameters which quantifies the compromise between

l1 norm minimization of the reconstruction in the synthesis domain and approximation accuracy to

the sampled measurements in the measurement domain. In the case of the Compressive Sampling

estimation of the coil sensitivity functions, α was set to zero. A more detailed description of the

optimization algorithm can be found in Appendix I of Ref. [18].

The joint estimation scheme was implemented by an iterative application of CSENSE and the

Compressive Sampling sensitivity estimation algorithm. In this case, three different l1 norm regu-

larization parameters had to be calibrated.

4.2.3 Data Sets

The three data sets described in section 3.2.2 were used for the experiments.
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4.2.4 Experiments

Signal Sparsity

In order to test the degree of sparsity of both MR images and coil sensitivity functions, several ex-

periments were done using the WAVELAB library. An MR brain image from data set BR was used

to quantify the effect of truncating its wavelet representation in a nonlinear way. More precisely, the

images generated by keeping the 20%, 10%, 5%, 2.5% and 1% of the largest Daubechies 4 wavelet

coefficients were visually evaluated. This truncation process is nonlinear because coefficients are

chosen depending on the specific representation of the signal and not a priori.

In the case of the sensitivity functions, the estimates obtained from a low resolution scan, as

explained in section 3.2.2, for the data sets BR and PH were analysed in a similar way. Their

representation in different wavelet transform domains, such as Daubechies, Symmlet, Battle, Coiflet,

Vaidyanathan and Beylkin, were truncated to different extents. For each truncated reference, the

normalised l2 error of the represention was calculated.

Image Reconstruction

Compressive Sampling SoS and CSENSE reconstructions of the SIM, BR and PH data sets were

performed for the three sampling grids with acceleration factors of 3.51 and 7.11. In the case of

CSENSE, reconstructions were carried out using both the erroneous and correct SIM coil sensitivity

functions (see Sec. 3.2.3) and the low resolution scan estimates of the BR and PH coil sensitivities

(see section 3.2.2). The criterion for evaluating the reconstruction was the normalised root mean

square error (NMRSE) of the magnitude of the reconstructed image, as defined in Eq. 3.14. In the

case of SIM, the reference image was the one used to generate the data set, for BR and PH it was

the fully sampled SENSE reconstruction.

CSENSE was also applied on simulated noisy data. The same simulated data as in the case of

JSENSE were used (see section 3.2.3). Reconstructions were carried out for the grids with accel-

eration factors of 1.92, 3.51 and 7.11. The same criteria as in the case of the noiseless data were

applied to evaluate the reconstruction.

In order to compare the results with image reconstructions at lower acceleration factors, additional

CSENSE reconstructions were performed for the grid with an acceleration factor of 1.92 for both

the noisy and noiseless SIM data and the BR and PH data sets.

Joint Image and Coil Sensitivity Reconstruction

In order to evaluate the Compressive Sampling coil sensitivity estimation, the algorithm was ap-

plied to the SIM, BR and PH data sets for the sampling grids with acceleration factors of 3.51
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and 7.11. The reference images used were the original SIM image and the fully sampled SENSE

reconstructions of the BR and PH images. The criterion for evaluating the reconstruction was the

normalised root mean square error (NMRSE) between the product of the sensitivity estimate and

the reference image of the fully sampled coil images, as defined in Eq. 3.13. The reconstruction

results were also visually evaluated.

The joint estimation algorithm was applied to the SIM data set in the case of the erroneous prior

sensitivity estimate for an acceleration factor of 1.92. In this case the wavelet and TV regularization

parameters for the image were fixed to 104 and the wavelet regularization parameter for the sen-

sitivity to 109. In the case of the BR and PH data sets, the image reconstructions for acceleration

factors of 1.92 and 3.51 were of high quality, so the algorithm was only applied for an accelera-

tion factor of 7.11. In both cases, visual inspection was used to evaluate the performance of the

algorithm.

4.3 Results

4.3.1 Signal Sparsity

Figure 4.3 shows the result of truncating the wavelet representation of the MR measured brain

image to different extents. The position of the coefficients used for the representation are also

shown. Eliminating up to 95% of the coefficients does not produce significant differences in the

image. Coefficients are principally eliminated from the finer scales of the wavelet representation,

indicating that they may correspond to noise or high frequency fluctuations that have no visible

influence on the image quality. When 97.5% or more coefficients are discarded, the quality of the

approximation is substantially degraded, although the general structure of the image is nevertheless

well conserved. In any case, degradation only occurs at very high compression rates, so that we can

conclude that the image is indeed sparse in the wavelet domain.

The graphs in Fig. 4.4 quantify the precision of truncated wavelet representations for the low reso-

lution scan coil sensitivity estimates of data sets BR and PH. Vaidyanathan and Beylkin wavelets

seem not to be well adapted to the compression of coil sensitivities, whereas Battle, Daubechies,

Coiflet and Symmlet wavelets perform much better. The BR coil sensitivity estimate is particularly

well compressed. For this data set, normalised approximation errors of under 1% are attained with

only 5% of the wavelet coefficients. In the case of the PH coil sensitivities, 18% of the coefficients

are needed to obtain such low approximation errors. In general, for both data sets a quite accurate

sparse representation of the sensitivity estimate is obtained.

56



Chapter 4. Compressive Sampling of 2D Parallel Magnetic Resonance Data

50

100% 20%

10% 5%

2.5% 1%

Figure 4.3: Sparsifying approximation of the CLEAR reconstruction of the BR data set image

obtained by keeping a certain percentage of the largest wavelet coefficients. At the right of each

image, the position of those coefficients in the wavelet representation of the image is shown.

4.3.2 Compressive Sampling SoS Image Reconstruction

All of the images obtained by the Compressive Sampling SoS reconstruction of the three test data

sets are presented in App. B.1. In each case, the reconstructed image visually selected as being

of best quality corresponded to the second largest value (104 for SIM and 5 in the case of BR

and PH) of wavelet regularization and an equal value of TV regularization. This selected set of

reconstructions is shown in Fig. 4.5. In general, the images are very inhomogeneous due to the sum

of squares reconstruction. The reconstruction of the three data sets for the lowest acceleration factor

presents no aliasing artifacts and is quite sharp. The reconstruction for an acceleration factor of

3.51 is similar but of lower quality. The highest acceleration factor, however, yields reconstructions

with blurred details and traces of aliasing artifacts.
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Figure 4.4: Normalised deviation from the original BR (top) and PH (bottom) coil sensitivity

functions for wavelet representations truncated to different extents. The type of wavelet used were

Battle (red), Daubechies (blue), Coiflet (magenta), Symmlet (black), Vaidyanathan (yellow) and

Beylkin (green).
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RF 1.92 RF 3.51 RF 7.11

Figure 4.5: Selected Compressive Sampling sum of squares reconstructions of the SIM (top row),

BR (middle row) and PH (bottom row) data sets subsampled at reduction factors (RF) of 1.92

(left column), 3.51 (middle column) and 7.11 (right column). For the SIM data set, the value of

the wavelet and TV regularization parameters was 104. For the BR and PH data sets their value

was 5.
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4.3.3 CSENSE Image Reconstruction

Figure 4.6 shows the NMRSE results for the CSENSE reconstruction of the SIM (using the correct

coil sensitivity function), BR and PH data sets. This measure is minimised at an intermediate level

of wavelet regularization for three of the TV regularization levels. In the case of the higher level

of TV regularization, the NMRSE just increases monotonously with the magnitude of the wavelet

regularization parameter. The combinations of TV and wavelet regularization which yield a better

match to the reference image are either a small value for the wavelet regularization parameter com-

bined with a large value (100 times larger) of the TV regularization parameter, or an intermediate

wavelet regularization level with the same value for the TV regularization parameter.

All of the images are presented in App. B.2, including reconstructions using the erroneous sensi-

tivity of the SIM data set. In each case, the reconstructed image visually selected as being of best

quality corresponded to the second largest value (104 in the case of SIM and 0.3 in the case of BR

and PH) of wavelet regularization and an equal value of TV regularization. This selected set of

reconstructions is shown in Fig. 4.7. It is interesting to note that for acceleration factors of 1.92

and 3.51 the erroneous sentivity estimate in the SIM data set does not have as much an impact

as in the SENSE reconstruction (see Sec. 3.3.2). For the remaining data sets, the reconstruction

was of good quality, although some aliasing artifacts are visible in the BR reconstruction for an

undersampling factor of 7.11. It is worth noting that, in the case of SIM and BR where the number

of coils is equal to 6, this undersampling factor is superior to the theoretical acceleration factor

that can be achieved by linear reconstruction methods.

Figure 4.8 shows the NMRSE error for the CSENSE reconstruction of the SIM data set with the

three different levels of added Gaussian noise. Lower error values were obtained for an intermediate

level of wavelet and TV regularization.

All of the visual results for the reconstruction of the noisy SIM data are presented in App. B.3.

As predicted by the comparison to the reference image, the best images for the lowest noise level

were obtained for an intermediate value of wavelet and TV regularization (2·103 for both). In the

case of lower SNR values (11.55 and 1.55 dB), however, the best reconstructions were yielded by

same level of wavelet regularization combined with a higher level of TV regularization (2·105). The

selected set of reconstructions is shown in Fig. 4.9. For the two lower noise levels most of the noise

is eliminated without significantly degrading the image quality. For the highest noise level, the

noise in the center of the image cannot be effectively suppressed without introducing more aliasing

artifacts.

60



Chapter 4. Compressive Sampling of 2D Parallel Magnetic Resonance Data

Reduction Factor: 7.11

Wavelet Regularization Parameter

N
R

M
S
E

(R
ef

er
en

ce
Im

a
g
e)

Wavelet Regularization Parameter

S
IM

N
R

M
S
E

(R
ef

er
en

ce
Im

a
g
e)

Reduction Factor: 3.51

Wavelet Regularization Parameter

N
R

M
S
E

(R
ef

er
en

ce
Im

a
g
e)

Wavelet Regularization Parameter

B
R

N
R

M
S
E

(R
ef

er
en

ce
Im

a
g
e)

Wavelet Regularization Parameter

N
R

M
S
E

(R
ef

er
en

ce
Im

a
g
e)

Wavelet Regularization Parameter

P
H

N
R

M
S
E

(R
ef

er
en

ce
Im

a
g
e)

10−2 10−1 1 101 102 103 104 10−2 10−1 1 101 102 103 104

10−2 10−1 1 101 102 103 104 10−2 10−1 1 101 102 103 104

102 103 104 105 106 102 103 104 105 106

10−2

10−1

1

10−2

10−1

1

10−2

10−1

1

10−2

10−1

1

10−2

10−1

1

10−2

10−1

1

Figure 4.6: NRMSE comparison to the reference image values of the SIM (top row), BR (middle

row) and PH (bottom row) data set CSENSE reconstruction for two subsampling schemes with

reduction factors of 7.11 (left column) and 3.51 (right column). Reconstructions were carried out

with different values of the l1 wavelet regularization parameter λ and for several values of the total

variation parameter: 0 (red), 10−2 (blue), 1 (green) and 102 (black) times λ.
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RF 1.92 RF 3.51 RF 7.11

Figure 4.7: Selected CSENSE reconstructions of the SIM data set with the erroneous sensitivity

estimate (top row), the SIM data set with the correct sensitivity estimate (second row), the BR

data set (third row) and the PH data set (bottom row) subsampled at reduction factors (RF) of

1.92 (left column), 3.51 (middle column) and 7.11 (right column). For the SIM data set, the value

of the wavelet and TV regularization parameters was of 103. For BR and PH their value was 0.3.
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Figure 4.8: NRMSE comparison to the reference image of the SIM data set CSENSE reconstruction

for different noise levels and two subsampling schemes with reduction factors of 7.11 (left column)

and 3.51(right column). Reconstructions were carried out with different values of the l1 wavelet

regularization parameter λ and for several values of the total variation parameter: 0 (red), 1 (blue)

and 102 (green) times λ. The k-space SNR values were: 21.55 dB (top row), 11.55 dB (middle row)

and 1.55 dB (bottom row).

63



Chapter 4. Compressive Sampling of 2D Parallel Magnetic Resonance Data

SNR=21.55 SNR=11.55 SNR=1.55

Figure 4.9: Selected CSENSE reconstructions of the SIM data set for k-space SNR values of 21.55

dB (left column), 11.55 dB (middle column) and 1.55 dB (right column) using the correct sensitivity

estimate. The data set was subsampled at reduction factors of 3.51 (top row) and 7.11 (bottom row).

The value of the wavelet regularization parameter was of 2·103. The value of the Total Variation

regularization parameter was of 2·105.
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Figure 4.10: NRMSE of the Compressive Sampling coil sensitivity function estimation for the SIM

(top row), BR (middle row) and PH (bottom row) data sets. The results correspond to two sub-

sampling schemes with reduction factors of 7.11 (red) and 3.51 (blue).

4.3.4 Compressive Sampling Joint Reconstruction

Figure 4.10 shows the results for the sensitivity estimation using the reference images. For the

two subsampling schemes analysed in the graph, the NMRSE error reaches its lowest values for

intermediate wavelet regularization levels.

The different sensitivity estimates corresponding to different values of the wavelet regularization

parameter are presented in App. B.4. As suggested by the graphs, the best approximations were

obtained for intermediate wavelet regularization levels (5·109 for SIM, 2 for BR and 50 for PH). The

corresponding set of coil sensitivity estimates is shown in Figs. 4.11, 4.12 and 4.13. The estimates

are quite smooth, hardly incorporate image detail and resemble the low resolution scan estimates

in the cases of PH and BR and the original sensitivity functions in the case of SIM quite closely.
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Figure 4.11: Original simulated sensitivity (top left) and coil images (top right) of the SIM data

set compared to the reconstructed sensitivities for acceleration factors 3.51 (middle row) and 7.11

(bottom row). The estimated sensitivities are shown on the left column and their product with the

reference image in the right column.
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Figure 4.12: Low resolution sensitivity estimate (top left) and fully sampled coil images (top right)

of the BR data set compared to the reconstructed sensitivities for acceleration factors 3.51 (middle

row) and 7.11 (bottom row). The estimated sensitivities are shown on the left column and their

product with the reference image in the right column.
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Figure 4.13: Low resolution sensitivity estimate (top left) and fully sampled coil images (top right)

of the PH data set compared to the reconstructed sensitivities for acceleration factors 3.51 (middle

row) and 7.11 (bottom row). The estimated sensitivities are shown on the left column and their

product with the reference image in the right column.
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Figure 4.14 shows the first three iterations of the joint estimation in the case of the SIM data set at

an acceleration factor of 1.92. Initialization was done with the erroneous SIM sensitivity estimate.

The sensitivity estimates for the three first iterations are shown in Fig. 4.16. The algorithm corrects

the sensitivity estimate and as a result aliasing artifacts disappear from the reconstructed image.

Figure 4.14: The three first image updates in the joint reconstruction of the SIM data set image

and sensitivity function for an acceleration factor of 1.92.

Figure 4.15 shows the first three image updates of the joint estimation when applied to the BR data

set at an acceleration factor of 7.11. It seems that some of the aliasing in the first reconstruction

of the image is eliminated in later iterations. The sensitivity estimate, shown in Fig. 4.17, seems to

be degraded by the reconstruction process. On the one hand, it presents some aliasing artifacts, on

the other hand, it is not as smooth as the original estimate, in particular at areas where the image

has sharp transitions.

Figure 4.15: The three first image updates in the joint reconstruction of the BR data set image and

sensitivity function for an acceleration factor of 7.11.
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Figure 4.16: The initial erroneous sensitivity estimate and the two first image updates in the joint

reconstruction of the SIM data set image and sensitivity function for an acceleration factor of 1.92.
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Figure 4.17: The initial low resolution sensitivity estimate and the two first image updates in the

joint reconstruction of the BR data set image and sensitivity function for an acceleration factor of

7.11.
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4.4 Discussion

The image results for CSENSE were of good quality at each of the tested acceleration factors.

Reconstructions for an acceleration factor superior to the number of coils used for data acquisition,

which is the traditional limit for parallel MRI reconstruction, were successfully carried out. More-

over, the reconstruction seemed to be quite robust in the presence of noise. In the case of the noisy

reconstruction data, however, results need to be interpreted with care, since the piecewise constant

structure of the phantom which was used is ideally suited for TV regularization based denoising. In

vivo MR images, with some exceptions like angiograms, do not usually have such a simple structure

and it is possible that strong TV regularization may deteriorate the quality of their reconstruction

by eliminating small details, as was observed in the case of the BR data set at high acceleration

factors. In any case, linear reconstruction techniques failed to even perform the reconstruction at

those factors.

The results for Compressive Sampling SoS reconstructions were of lower quality, as they did not

exploit sensitivity-encoded information. The method could, however, be useful to calculate an ini-

tial coil sensitivity or image estimate within an iterative joint estimation framework.

The results obtained for the estimation of coil sensitivity functions from accurate image estimates

through l1 norm minimization are promising. When integrated in the joint estimation algorithm,

however, coil sensitivity estimates are significantly degraded in the case of in vivo data. The reason

for this could be that, even though regular functions like coil sensitivities are sparse in the wavelet

domain, the opposite statement is not necessarily true, as there are many irregular images that

admit sparse wavelet representations. As a consequence, minimizing the l1 norm in the wavelet do-

main does not suffice to assure smooth estimates. The results for the application of the Compressive

Sampling joint reconstruction, when compared to JSENSE results, suggest that favouring smooth

solutions is essential in order to effectively correct coil sensitivity functions using inaccurate image

estimates. It is consequently necessary to have a regularizing term that imposes function regularity

and this is not the case for the l1 norm minimization of the wavelet transform. Possible solutions

to this problem could be the use of other transforms which are better adapted to smooth functions,

such as ridgelets [3], or adding a further regularization term based on a Sobolev norm, as in [29].

Obtaining an accurate approximation of the coil sensitivity functions from an image estimate

through Compressive Sampling could also be useful in a setting different from joint reconstruc-

tion. It could be used in the estimation of coil sensitivities from a low resolution scan. Instead of

simply dividing the whole body scan image by each of the coil images, as explained in section 3.2.2,

Compressive Sampling of the coil sensitivities could be applied to yield a more robust estimate.

In this framework, compressive sampling of the sensitivities would play a similar role as wavelet
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denoising [12].

A major difficulty in the application of the Compressive Sampling techniques presented in this

chapter is the empirical calibration of the l1 regularization parameters. Developing an automatic

criterion for the selection of adequate values for the different parameters involved would be highly

desirable. Such a criterion could for example take into account the level of estimated noise, which

can be used to determine an upper bound for the l2 norm error of the data approximation as

suggested in Ref. [18]. The difficulty of determining the value of the regularization parameters for

the reconstruction of parallel MR data is, however, far from unique to the Compressive Sampling

framework. In fact, it is encountered in the vast majority of current reconstruction methods, as

almost all of them rely on some form of regularization.
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SHARK (Sparse incoHerent

Arbitrary Resampling in K-space)

As mentioned in Chap. 2, one of the main difficulties in the application of Compressive Sampling

methods to MR imaging is the physical implementation of adequate k-space trajectories. In 3D

imaging this can be alleviated by combining subsampling in both phase-encoding directions. Simi-

larly, in dynamic imaging, irregular subsampling in the time direction can be applied to accomplish

the necessary incoherence. However in the case of 2D imaging, subsampling only makes sense along

the one phase encoding direction. Additionally, hardware considerations limit the possible trajec-

tories which can be accurately implemented. To make matters worse, most MR scans in the clinic

today are based on Cartesian trajectories, which hinder Compressive Sampling reconstruction due

to the coherence between the synthesis and measurement domains (see Sec. 2.2.2).

A solution to this problem could be to resample k-space data from an undersampled Cartesian grid

to an arbitrary grid. This is obviously not possible unless there is an additional source of informa-

tion with which to carry out the interpolation. The main idea underlying the Sparse incoHerent

Arbitrary Resampling in K-space (SHARK) algorithm presented in this chapter is that sensitivity

encoding can be exploited to obtain such a resampling.

An approach which bears certain similarities to SHARK has recently been presented [27]. This

algorithm uses the so called GRAPPA Operator Gridding (GROG) to produce an irregular sample

distribution. Unaliased images are then reconstructed from the undersampled data employing a

conjugate gradient algorithm. The point of applying the resampling step is to accelerate acquisition

as justified by the generalized sampling theorem. This theorem states that unaliased images can

be reconstructed as long as the average sampling rate is equal to the Nyquist rate, even if it is

violated in portions of k-space. GROG resampling is used to facilitate the suppression of aliasing

artifacts. Consequently this approach is equivalent to SHARK without l1 minimization and thus
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without exploiting the sparsity of MR images.

5.1 Theory

5.1.1 Two-Step Reconstruction

SHARK is a two-step algorithm. The input data can be any parallel MR data, including data

sampled on a Cartesian grid. After the initial regular MR parallel acquisition, k-space interpolation

is carried out by combining the signals acquired by the different coils. The interpolated k-space

samples belong to a previously determined irregular grid which is optimized for a certain synthesis

domain. This step of the algorithm uses coil sensitivity information to compute k-space data dis-

tributed on an irregular grid that is adequate for Compressive Sampling reconstruction.

The second step basically consists of applying Compressive Sampling to the resampled data. If

the original image is sufficiently sparse in the synthesis domain for which the resampling grid is

designed, this will produce an accurate reconstruction, as described in Chap. 2. In this way, the

incoherence, which is artificially generated with the help of sensitivity encoding, makes it possible

for the Compressive Sampling approach to exploit image sparsity. Fig. 5.1 is a graphical description

of the reconstruction procedure.

Figure 5.1: Description of the different steps in the SHARK algorithm.

5.1.2 K-space data interpolation

K-space interpolation can be carried out based on the two main approaches to parallel MR data

processing: using an explicit sensitivity function estimate or implicitly exploiting the sensitivity

information encoded in ACS lines. In the first case, it would be necessary to carry out a SENSE-

like reconstruction in k-space. Examples of such algorithms are kSPA [16] and direct SENSE
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(dSENSE) [28]. dSENSE was the chosen approach in the current implementation of SHARK.

In order to perform image reconstruction in k-space, dSENSE approximates each k-space sample

by a linear combination of only a subset of the acquired data. The procedure is equivalent to cal-

culating an approximation for the estimator of the image based on the SENSE encoding described

in Sec. 1.3.2, only in k-space instead of the image domain.

Pixel by pixel multiplication in the image domain is equivalent to convolution in k-space. The effect

of sensitivity encoding on the signal in k-space can consequently be described as a convolution

between the k-space representation of the image Ĩ = F I and the coil sensitivities S̃c = F Sc. A

linear operator C can be defined, which represents this convolution, and thus maps the k-space

representation of the image Ĩ to the k-space representation of the coil images Ĩc. Introducing

a projection matrix P to represent k-space undersampling, we obtain an expression in k-space

equivalent to Eq. 1.11:

Ĩc = P C Ĩ (5.1)

The interest in this alternative approach stems from the fact that Eq. 5.1 can be truncated to only

take k-space data into account that is situated in a local neighbourhood. This makes it possible

to calculate Ĩ by direct inversion of matrices of small dimensions, consequently avoiding the ap-

plication of iterative methods as in GSENSE (hence the name of Direct SENSE). A more detailed

account of the algorithm can be found in Ref. [28].

Alternatively, a GRAPPA-like approach can be used to perform k-space interpolation. In Ref. [8]

Griswold et al. argue that the GRAPPA reconstruction can be reformulated as a matrix operator

that shifts data in k-space. Using this formalism, they prove that there exists an infinitesimal

GRAPPA operator that shifts data in k-space by arbitrarily small amounts. Resampling the k-

space data on the chosen arbitrary grid for Compressive Sampling reconstruction could then be

accomplished through repeated applications of this infinitesimal GRAPPA operator. The idea is

further developed in [26]

5.1.3 K-Space Sampling Grid Design

As already discussed in Sec. 4.1.2, designing an adequate grid for Compressive Sampling of MR

data can be done through a Monte Carlo procedure. In the case of SHARK, an additional constraint

must be taken into account when designing the sampling grid. K-space interpolation by dSENSE is

more accurate at locations which are near measured k-space samples [28]. As a result, resampling

should favour points lying near those locations. The uniform probability density function, which

determines with which probability each point of the grid operator G(x, y) (in this case the grid
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operator takes values for each pixel, and not for each phase-encoded line) is sampled or not when

generating the grids in the Monte Carlo procedure, can be adapted to do so:

P {G(x, y) = 1}




∝ α(x2 + y2)−

p

2 + (1 − α)|y − ys|
−q if

√
x2 + y2 > r

= 1 if
√

x2 + y2 ≤ r
(5.2)

where (x, y) are the coordinates relative to the k-space center, ys the position of the nearest sampled

phase-encoded line, p and q real-valued parameters which determine how much denser the sampling

is near the sampled lines and the k-space center respectively, and r the radius of the fully sampled

k-space area. Parameter α calibrates the relative importance between performing denser sampling

near the center and denser sampling near the sampled locations. As in Sec. 4.1.2, the TPSF of the

sparsifying transform for each of the grids generated in this way is calculated and used to select

the most incoherent grid.

5.1.4 Motivations for SHARK

The point of carrying out a Compressive Sampling reconstruction after having applied k-space

interpolation could be questioned in the following way: Why not interpolate all of k-space and

reconstruct the image directly as in GRAPPA or dSENSE? There are two possible answers to this

question which correspond to two potential applications of the algorithm.

The first answer is that at high subsampling factors, a full resampling with GRAPPA or dSENSE

may be degraded by k-space interpolation errors. However, it may still be possible to interpolate

accurately enough on the arbitrary grid to make a Compressive Sampling reconstruction possible.

This imposes a double constraint on the position of the resampled points. They must be located

close enough to the original samples to ensure an accurate interpolation, but at the same time their

relative positions must be incoherent enough for the Compressive Sampling algorithm to produce

a good reconstruction.

The second answer is that a Compressive Sampling reconstruction may be more robust against

noise than a SENSE or GRAPPA reconstruction. This is caused by the fact that Compressive

Sampling exploits the sparsity of the original image to eliminate noise. The application of SHARK

would then be close in spirit to performing l1 regularization denoising.

5.2 Methods

5.2.1 K-Space Sampling Grid Design

In order to generate the k-space sampling grids, the Monte Carlo design technique described in

Sec. 5.1.3 was implemented. The practical details of the implementation are essentially the same
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as in Sec. 4.2.1. The original regular grids used to measure the data follow three different regular

subsampling patterns: acceleration factor of 4 with 12 ACS lines and acceleration factor of 8 with

14 and 28 ACS lines. For each of these original grids, an arbitrary resampling grid was designed by

the Monte Carlo procedure. An additional resampling grid was generated in each case by combining

all the samples of each regular grids with those of its corresponding Monte Carlo grid. More details

about the designed grids can be found in Sec. A.2.

5.2.2 Algorithm Implementation

An implementation of dSENSE in C was used for the k-space interpolation step of the algorithm. For

the Compressive Sampling step, Michael Lustig’s Sparse MRI software [17] was used. As commented

in Sec. 4.2.2, this software solves an unconstrained least squares problem with l1 norm regularization

terms, where the regularization constants must be previously determined. The chosen sparsifying

transforms were the Daubechies 4 wavelet and spatial finite differences.

5.2.3 Data Sets

The data sets used for testing the algorithm were SIM and PH (see Sec. 3.2.2).

5.2.4 Experiments

K-Space Interpolation Accuracy

An important hypothesis in SHARK reconstruction is that the accuracy of interpolation of a k-

space point depends on its distance to the nearest sampled k-space location. In order to verify this,

the whole k-space of the PH data set image was reconstructed using dSENSE for three regular

subsampling schemes: acceleration factor of 4 with 12 ACS lines and acceleration factor of 8 with

14 and 28 ACS lines. The normalised root square error (NRSE) of each k-space position (kx, ky)

was calculated in order to quantify k-space interpolation accuracy:

NRSE(kx, ky) =

√√√√√
[
Ĩ(kx, ky) − Ĩfull(kx,ky)

]2

Ĩfull(kx, ky)2
(5.3)

where Ĩfull is the k-space representation of an image reconstructed with dSENSE using the fully

sampled data.

Total Variation Reconstruction

As an initial simple experiment to explore the viability of SHARK reconstruction, reconstructions of

the SIM data set were performed for acceleration factors 2 and 4 by reinterpolating on completely

random grids. The second step of the reconstruction was carried out by applying Compressive

Sampling with Total Variation regularization. The normalised root mean square error (NMRSE)
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approximation to the magnitude of the SIM reference image, as defined in Eq. 3.14, was used to

evaluate the quality of the reconstruction.

Reconstruction of Phantom Data

The six grids designed with the Monte Carlo procedure were used to reinterpolate the PH data

from the three original regular undersampling grids. The SHARK reconstructions were then visually

compared to complete dSENSE and regularized SENSE recontructions of the data.

5.3 Results

5.3.1 K-Space Interpolation Accuracy

Fig. 5.2 shows the normalised k-space error defined by Eq. 5.3 for each of the k-space positions in

the complete k-space dSENSE reconstruction of the PH data from the three regular undersampling

schemes. Sampled locations are marked with a red cross. For the three grids, most of the largest er-

rors occur at unsampled locations, suggesting that the hypothesis that interpolation is less accurate

away from measured k-space positions is correct for these examples.

5.3.2 SIM Phantom Reconstruction

Fig. 5.3 shows the NMRSE of the SHARK reconstruction for an acceleration factor of 2. At first,

the NMRSE decreases when more l1 regularization is applied. At a certain point, further increasing

the regularization has the opposite effect, an increase of the NMRSE. This suggests the existence

of an intermediate regularization parameter value, which is an adequate compromise between l1

Total Variation minimization and l2 data approximation.

The effect of the different values of the TV regularization parameter on the reconstruction can be

seen in Fig. 5.4, where the reconstruction of the SIM data set for the random grid with acceleration

factor 4 and three different values of the parameter is shown. In the case of the lowest value, imposing

a more precise approximation to the data results results in the presence of aliasing artifacts. In

the case of the highest value, too much TV regularization results in a loss of sharpness and detail.

Intermediate values suppress artifacts and result in images with a good level of detail.
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Figure 5.2: Normalised square root error of the dSENSE reconstruction at each k-space positions

for three grids with undersampling factors 4 (with 12 ACS lines) and 8 (with 14 and 28 ACS lines).

Red crosses indicate sampled k-space locations.
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Figure 5.3: NMRSE for different values of the Total Variation regularization parameter in the

SHARK reconstruction of the SIM data after reinterpolation on a random grid with undersampling

factor 2.
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Figure 5.4: SHARK reconstructions of the SIM data for TV regularization parameter values of 100,

105 and 1011 (acceleration factor of 4).

5.3.3 Phantom Data

All the results from the reconstruction of the PH data set subsampled with three different regular

subsampling schemes and resampled onto the designed grids described in A.2 can be found in

App. B.5. Fig. 5.5 shows a selected reconstruction for the arbitrary grid and the grid which combines

the arbitrary and regular schemes, compared to dSENSE and regularized SENSE reconstructions.

For an acceleration factor of 4 with 12 ACS lines and an acceleration factor of 8 with 28 lines, the

SHARK reconstructions are superior to the other alternatives in terms of the suppression of aliasing

artifacts and noise amplification. The best quality reconstructions are obtained for the resampling

grid that combines the arbitrary and regular sampling schemes.

5.4 Discussion

In this chapter, the Sparse incoHerent Arbitrary Resampling in K-space (SHARK) algorithm was

presented. This algorithm uses sensitivity encoding to facilitate the exploitation of image sparsity

by a non-linear Compressive Sampling optimization scheme. As opposed to other algorithms which

also employ Compressive Sampling techniques, SHARK can be applied to regular Cartesian input

data.

The results of the first experiments were promising, but not completely conclusive. In the mentioned

examples, the algorithm does in fact improve the reconstruction quality with respect to a complete

dSENSE reconstruction. As a result, it seems plausible that performing l1 minimisation in the

chosen synthesis domains to limit noise amplification could be an interesting alternative to the

l2 based approach on which Tikhonov regularization is based. Further work will include more
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detailed tests to determine the denoising performance of the algorithm and its application to k-

space trajectories other than Cartesian.

Figure 5.5: Different reconstructions for data originally sampled at an acceleration factor of 4 with

12 ACS lines (top row), 8 with 14 lines (middle row) and 8 with 28 lines (bottom row). The

column at the left shows regularized SENSE reconstructions, the second column shows dSENSE

reconstructions, the third row shows SHARK reconstruction for the resampling grid generated by

the Monte Carlo procedure and the column at the right shows SHARK reconstructions for the

combination of the resampling and regular grids.
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Conclusion

In general, nonlinear parallel MRI reconstruction models are more complex than their linear al-

ternatives. This makes it a challenge to define corresponding reconstruction problems which are

well-posed and computationally tractable, but at the same time it allows to address the main lim-

itations of linear approaches by exploiting a priori information about the acquisition process and

the desired solutions in a more flexible way. The results presented in this work suggest that the

application of nonlinear techniques could provide significant improvements in parallel MR image

reconstruction. On the one hand, the joint coil sensitivity and image estimation model can improve

the explicit sensitivity estimate of the SENSE framework, thereby yielding more accurate image

reconstructions. On the other hand, Compressive Sampling can be effectively applied to parallel

MR data, using coil sensitivity information either to adapt the Compressive Sampling model or

to resample the data onto a grid especially adapted for sparse reconstruction. In both cases, noise

amplification is reduced and good reconstruction quality is achieved for high acceleration factors

in several examples.

There are two main challenges to address in the further development of the nonlinear reconstruction

techniques presented here. On the one hand, it would be very useful to analyze the characteris-

tics of both images and coil sensitivities in more detail, so that they can be incorporated in the

reconstruction models in a more effective way. This includes, for instance, the problem of finding

a transform domain in which the sparsity of coil sensitivities can be used to yield more accurate

and robust estimates through l1 norm minimisation. On the other hand, methods that solve the

optimization problems arising from those models in a more efficient way could be developed. Ex-

amples of such methods would include alternatives to the greedy algorithm of Chap. 3 and to the

empirical calibration of the l1 norm regularization parameters in Chaps. 4 and 5.
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Appendix A

K-Space Sampling Grid Design

A.1 Phase-Encoding Subsampling

Three grids were designed for the tests in Chap. 4. In the first grid, parameters p and r in equa-

tion 4.2 took the values 5 and 20% (r is expressed as a percentage of k-space length). For the second

and third grids, p was 5 and 7.5, and r the values 20% and 1.5%. The sampling probability of each

phase-encoding line for each of these grids is shown in Fig. A.1.
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Figure A.1: Sampling probability for each phase encoding lines in three grid design schemes which

aim to generate grids with acceleration factors of 1.9 (left), 3.5 (center) and 7.1 (right)).

The three grids obtained in this way are displayed in Figs. A.2, A.3 and A.4. In each case the

grids are compared to two other grids of similar acceleration factor, obtained respectively with

regular and uniform random subsampling. The comparison is based on the Transform Point Spread

Function shape and secondary lobe level, and on the aliasing artifacts generated on the phantom

of the SIM data set by performing the following transformation: Ialiased = (Pg F )HPg F I. I is

the phantom image and Pg the projection matrix for the grid. In every case, we can see how the

phase-encoding pseudo-random grid is a compromise between the coherence of the regular grid and

the incoherence of the totally random grid.
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Appendix A. K-Space Sampling Grid Design

Regular Grid with ACS Lines Y-Randomized Variable Density Grid Uniform Random Grid
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Figure A.2: Three alternative grid designs (top row, white points indicate samples), with their

respective TPSF for a fine-scale Daubechies 4 wavelet coefficient (middle row) and the aliasing

pattern they produce on a phantom image (bottom row). In the graphs, the TPSF maximum is

marked in red and a green line indicates the maximum secondary lobe value. For the regular grid

with ACS lines, the acceleration factor is 1.94. For the other two grids the acceleration factor is

1.92.
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Appendix A. K-Space Sampling Grid Design

Regular Grid with ACS Lines Y-Randomized Variable Density Grid Uniform Random Grid
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Figure A.3: Three alternative grid designs (top row, white points indicate samples), with their

respective TPSF for a fine-scale Daubechies 4 wavelet coefficient (middle row) and the aliasing

pattern they produce on a phantom image (bottom row). In the graphs, the TPSF maximum is

marked in red and a green line indicates the maximum secondary lobe value. For the regular grid

with ACS lines, the acceleration factor is 3.36. For the other two grids the acceleration factor is

3.51.
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Regular Grid with ACS Lines Y-Randomized Variable Density Grid Uniform Random Grid
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Figure A.4: Three alternative grid designs (top row, white points indicate samples), with their

respective TPSF for a fine-scale Daubechies 4 wavelet coefficient (middle row) and the aliasing

pattern they produce on a phantom image (bottom row). In the graphs, the TPSF maximum is

marked in red and a green line indicates the maximum secondary lobe value. For the regular grid

with ACS lines, the acceleration factor is 5.56. For the other two grids the acceleration factor is

7.11.
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Appendix A. K-Space Sampling Grid Design

A.2 SHARK Subsampling

Three grids were designed for the application of SHARK, following the method described in

Secs. 5.1.3 and 5.2.1. They were respectively based on regular grids with acceleration factor 4

and 12 ACS lines, with acceleration factor 8 and 14 and with acceleration factor 8 and 28 ACS

lines. The sampling probability of each k-space position for each of these grids is shown in Fig. A.5.

Regular Grid with ACS Lines Constrained Variable Density Grid Regular and Variable Grid Combination

Figure A.5: Sampling probability for each pixel in three sampling schemes based on regular grids

with an acceleration factor of 4 and 12 ACS lines (left), an acceleration factor of 8 and 14 ACS lines

(center) and an acceleration factor of 8 and 28 ACS lines (right). Probability values are represented

by shades of grey ranging from black, which indicates zero probability, to white, which indicates

probability 1.

The three grids obtained by the Monte Carlo design procedure are displayed in Figs. A.6, A.7

and A.8. For each designed grid, another grid was generated by combining its samples with those

of the regular grid used to generate it. In the three cases, both grids are compared to the regular

grid used to generate them in terms of the Transform Point Spread Function shape and secondary

lobe level, and in terms of the aliasing artifacts generated on the phantom of the SIM data set as

explained in the previous section.

In general, the incoherence is more limited than in the case of random sampling in the phase-

encoding direction, and of course than in the case of totally random sampling. In all three examples,

both resampling grids are better in terms of incoherence than the regular scheme and the arbitrary

grid is in turn more incoherent than the combination of both.
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Regular Grid with ACS Lines Constrained Variable Density Grid Regular and Variable Grid Combination
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Figure A.6: Regular grid with an acceleration factor of 4 and 12 ACS lines (top left), compared to

the designed grid based on the same undersampling pattern (top center and right). The comparison

is based on their respective TPSF for a fine-scale Daubechies 4 wavelet coefficient (middle row)

and the aliasing pattern they produce on a phantom image (bottom row). In the graphs, the TPSF

maximum is marked in red and a green line indicates the maximum secondary lobe value.
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Regular Grid with ACS Lines Constrained Variable Density Grid Regular and Variable Grid Combination
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Figure A.7: Regular grid with an acceleration factor of 8 and 14 ACS lines (top left), compared to

the designed grid based on the same undersampling pattern (top center and right). The comparison

is based on their respective TPSF for a fine-scale Daubechies 4 wavelet coefficient (middle row)

and the aliasing pattern they produce on a phantom image (bottom row). In the graphs, the TPSF

maximum is marked in red and a green line indicates the maximum secondary lobe value.
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Regular Grid with ACS Lines Constrained Variable Density Grid Regular and Variable Grid Combination

Wavelet Coefficients

T
ra

n
sf

o
rm

P
o
in

t
S
p
re

a
d

F
u
n
ct

io
n

65440 65460 65480 65500 65520
10−3

10−2

10−1

1

Wavelet Coefficients

T
ra

n
sf

o
rm

P
o
in

t
S
p
re

a
d

F
u
n
ct

io
n

65440 65460 65480 65500 65520
10−3

10−2

10−1

1

Wavelet Coefficients

T
ra

n
sf

o
rm

P
o
in

t
S
p
re

a
d

F
u
n
ct

io
n

65440 65460 65480 65500 65520
10−3

10−2

10−1

1

Figure A.8: Regular grid with an acceleration factor of 8 and 28 ACS lines (top left), compared to

the designed grid based on the same undersampling pattern (top center and right). The comparison

is based on their respective TPSF for a fine-scale Daubechies 4 wavelet coefficient (middle row)

and the aliasing pattern they produce on a phantom image (bottom row). In the graphs, the TPSF

maximum is marked in red and a green line indicates the maximum secondary lobe value.
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Appendix B

Compressive Sampling Regularization

Parameters

In this chapter, reconstruction results for the different Compressive Sampling algorithms presented

in previous chapters are shown for different values of wavelet and TV l1 regularization parameters.

In general, the effect of the different regularization terms is similar for the different data sets and

subsampling schemes.

When both regularization parameters have small values, aliasing artifacts are present in the re-

constructed images. When the TV regularization parameter value is large, the solution is forced

to resemble a piecewise constant function, suppressing some of the details in the image. This is

more obvious in the case of the BR data set, since both the phantoms of the SIM and PH images

are much better approximated by piecewise constant functions. When the wavelet regularization

parameter value is large, the signal level in some areas of the image is strongly amplified. When

both parameters are large, intermediate effects are noticeable. The best quality images are obtained

for parameter values which are an adequate compromise between data approximation and sparsity

in the two transform domains.

Sec. B.1 shows the results of the Compressive Sampling SoS reconstruction (see Sec. 4.1.3) for the

three data sets at the different acceleration factors. In general, all of the results present inhomo-

geneities caused by the SoS reconstruction. Sec. B.2 shows CSENSE results for noiseless data and

Sec. B.3 for noisy data. Sec. B.4 shows sensitivity estimation results. Finally, Sec. B.5 shows image

reconstructions obtained with SHARK.
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Appendix B. Compressive Sampling Regularization Parameters

B.1 Compressive Sampling SoS Reconstruction

Original Image

λ=102 λ=104 λ=106 λ=108

Figure B.1: Compressive Sampling sum of squares reconstruction of the SIM data set subsampled

at a reduction factor of 1.92 for several values of the wavelet regularization parameter λ and the

total variation parameter: 0 (second row), 1 (third row) and 102 (bottom row) times λ. In the first

row the original image used to generate the data set is shown for comparison.
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Original Image

λ=102 λ=104 λ=106 λ=108

Figure B.2: Compressive Sampling sum of squares reconstruction of the SIM data set subsampled

at a reduction factor of 3.51 for several values of the wavelet regularization parameter λ and the

total variation parameter: 0 (second row), 1 (third row) and 102 (bottom row) times λ. In the first

row the original image used to generate the data set is shown for comparison.
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Original Image

λ=102 λ=104 λ=106 λ=108

Figure B.3: Compressive Sampling sum of squares reconstruction of the SIM data set subsampled

at a reduction factor of 7.11 for several values of the wavelet regularization parameter λ and the

total variation parameter: 0 (second row), 1 (third row) and 102 (bottom row) times λ. In the first

row the original image used to generate the data set is shown for comparison.
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CLEAR Image

λ=10−1 λ=5 λ=50 λ=103

Figure B.4: Compressive Sampling sum of squares reconstruction of the BR data set subsampled

at a reduction factor of 1.92 for several values of the wavelet regularization parameter λ and the

total variation parameter: 0 (second row), 1 (third row) and 102 (bottom row) times λ. In the first

row a CLEAR reconstruction is shown for comparison.
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CLEAR Image

λ=10−1 λ=5 λ=50 λ=103

Figure B.5: Compressive Sampling sum of squares reconstruction of the BR data set subsampled

at a reduction factor of 3.51 for several values of the wavelet regularization parameter λ and the

total variation parameter: 0 (second row), 1 (third row) and 102 (bottom row) times λ. In the first

row a CLEAR reconstruction is shown for comparison.
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CLEAR Image

λ=10−1 λ=5 λ=50 λ=103

Figure B.6: Compressive Sampling sum of squares reconstruction of the BR data set subsampled

at a reduction factor of 7.11 for several values of the wavelet regularization parameter λ and the

total variation parameter: 0 (second row), 1 (third row) and 102 (bottom row) times λ. In the first

row a CLEAR reconstruction is shown for comparison.
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CLEAR Image

λ=10−1 λ=5 λ=50 λ=103

Figure B.7: Compressive Sampling sum of squares reconstruction of the PH data set subsampled

at a reduction factor of 1.92 for several values of the wavelet regularization parameter λ and the

total variation parameter: 0 (second row), 1 (third row) and 102 (bottom row) times λ. In the first

row a CLEAR reconstruction is shown for comparison.
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CLEAR Image

λ=10−1 λ=5 λ=50 λ=103

Figure B.8: Compressive Sampling sum of squares reconstruction of the PH data set subsampled

at a reduction factor of 3.51 for several values of the wavelet regularization parameter λ and the

total variation parameter: 0 (second row), 1 (third row) and 102 (bottom row) times λ. In the first

row a CLEAR reconstruction is shown for comparison.

104



Appendix B. Compressive Sampling Regularization Parameters

CLEAR Image

λ=10−1 λ=5 λ=50 λ=103

Figure B.9: Compressive Sampling sum of squares reconstruction of the PH data set subsampled

at a reduction factor of 7.11 for several values of the wavelet regularization parameter λ and the

total variation parameter: 0 (second row), 1 (third row) and 102 (bottom row) times λ. In the first

row a CLEAR reconstruction is shown for comparison.
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B.2 CSENSE Image Reconstruction

Original Image

λ=102 λ=103 λ=104 λ=105 λ=106

Figure B.10: CSENSE reconstruction of the SIM data set subsampled at a reduction factor of 1.92

for several values of the wavelet regularization parameter λ and the total variation parameter: 0

(second row), 1 (third row) and 102 (bottom row) times λ. In the first row the original image used

to generate the data set is shown for comparison.
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Original Image

λ=102 λ=103 λ=104 λ=105 λ=106

Figure B.11: CSENSE reconstruction of the SIM data set subsampled at a reduction factor of 3.51

for several values of the wavelet regularization parameter λ and the total variation parameter: 0

(second row), 10−2 (third row), 1 (fourth row) and 102 (bottom row) times λ. In the first row the

original image used to generate the data set is shown for comparison.
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Original Image

λ=102 λ=103 λ=104 λ=105 λ=106

Figure B.12: CSENSE reconstruction of the SIM data set subsampled at a reduction factor of 7.11

for several values of the wavelet regularization parameter λ and the total variation parameter: 0

(second row), 10−2 (third row), 1 (fourth row) and 102 (bottom row) times λ. In the first row the

original image used to generate the data set is shown for comparison.
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Original Image

λ=102 λ=103 λ=104 λ=104

Figure B.13: CSENSE reconstruction based on an erroneous sensitivity function estimate of the SIM

data set subsampled at a reduction factor of 1.92 for several values of the wavelet regularization

parameter λ and the total variation parameter: 0 (second row), 1 (third row) and 102 (bottom row)

times λ. In the first row the original image used to generate the data set is shown for comparison.
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Original Image

λ=102 λ=103 λ=104 λ=104

Figure B.14: CSENSE reconstruction based on an erroneous sensitivity function estimate of the SIM

data set subsampled at a reduction factor of 3.51 for several values of the wavelet regularization

parameter λ and the total variation parameter: 0 (second row), 1 (third row) and 102 (bottom row)

times λ. In the first row the original image used to generate the data set is shown for comparison.
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Original Image

λ=102 λ=103 λ=104 λ=104

Figure B.15: CSENSE reconstruction based on an erroneous sensitivity function estimate of the SIM

data set subsampled at a reduction factor of 7.11 for several values of the wavelet regularization

parameter λ and the total variation parameter: 0 (second row), 1 (third row) and 102 (bottom row)

times λ. In the first row the original image used to generate the data set is shown for comparison.
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CLEAR Image

λ=10−2 λ=3 10−1 λ=104 λ=10 λ=3 102

Figure B.16: CSENSE reconstruction of the BR data set subsampled at a reduction factor of 1.92

for several values of the wavelet regularization parameter λ and the total variation parameter: 0

(second row), 1 (third row) and 102 (bottom row) times λ. In the first row a CLEAR reconstruction

is shown for comparison.
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CLEAR Image

λ=10−2 λ= 3 10−1 λ= 1 λ= 3 102 λ=104

Figure B.17: CSENSE reconstruction of the BR data set subsampled at a reduction factor of 3.51

for several values of the wavelet regularization parameter λ and the total variation parameter: 0

(second row), 10−2 (third row), 1 (fourth row) and 102 (bottom row) times λ. In the first row a

CLEAR reconstruction is shown for comparison.
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CLEAR Image

λ=10−2 λ= 3 10−1 λ= 1 λ= 3 102 λ=104

Figure B.18: CSENSE reconstruction of the BR data set subsampled at a reduction factor of 7.11

for several values of the wavelet regularization parameter λ and the total variation parameter: 0

(second row), 10−2 (third row), 1 (fourth row) and 102 (bottom row) times λ. In the first row a

CLEAR reconstruction is shown for comparison.
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CLEAR Image

λ=10−2 λ=3 10−1 λ=104 λ= 1 λ=3 102

Figure B.19: CSENSE reconstruction of the PH data set subsampled at a reduction factor of 1.92

for several values of the wavelet regularization parameter λ and the total variation parameter: 0

(second row), 1 (third row) and 102 (bottom row) times λ. In the first row a CLEAR reconstruction

is shown for comparison.
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CLEAR Image

λ=10−2 λ=3 10−1 λ= 1 λ=104 λ=3 102

Figure B.20: CSENSE reconstruction of the PH data set subsampled at a reduction factor of 3.51

for several values of the wavelet regularization parameter λ and the total variation parameter: 0

(second row), 10−2 (third row), 1 (fourth row) and 102 (bottom row) times λ. In the first row a

CLEAR reconstruction is shown for comparison.
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CLEAR Image

λ=10−2 λ=3 10−1 λ= 1 λ=104 λ=3 102

Figure B.21: CSENSE reconstruction of the PH data set subsampled at a reduction factor of 7.11

for several values of the wavelet regularization parameter λ and the total variation parameter: 0

(second row), 10−2 (third row), 1 (fourth row) and 102 (bottom row) times λ. In the first row a

CLEAR reconstruction is shown for comparison.
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B.3 CSENSE Noisy Data Reconstruction

λ=10 λ= 2 103 λ= 5 105 λ= 108

Figure B.22: CSENSE reconstruction of the SIM data set with added Gaussian noise (k-space SNR

of 21.11 dB) subsampled at a reduction factor of 3.51 for several values of the wavelet regularization

parameter λ and the total variation parameter: 0 (first row), 1 (second row) and 102 (bottom row)

times λ.
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λ=10 λ= 2 103 λ= 5 105 λ= 108

Figure B.23: CSENSE reconstruction of the SIM data set with added Gaussian noise (k-space SNR

of 21.11 dB) subsampled at a reduction factor of 7.11 for several values of the wavelet regularization

parameter λ and the total variation parameter: 0 (first row), 1 (second row) and 102 (bottom row)

times λ.
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λ=10 λ= 2 103 λ= 5 105 λ= 108

Figure B.24: CSENSE reconstruction of the SIM data set with added Gaussian noise (k-space SNR

of 11.11 dB) subsampled at a reduction factor of 3.51 for several values of the wavelet regularization

parameter λ and the total variation parameter: 0 (first row), 1 (second row) and 102 (bottom row)

times λ.
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λ=10 λ= 2 103 λ= 5 105 λ= 108

Figure B.25: CSENSE reconstruction of the SIM data set with added Gaussian noise (k-space SNR

of 11.11 dB) subsampled at a reduction factor of 7.11 for several values of the wavelet regularization

parameter λ and the total variation parameter: 0 (first row), 1 (second row) and 102 (bottom row)

times λ.
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λ=10 λ= 2 103 λ= 5 105 λ= 108

Figure B.26: CSENSE reconstruction of the SIM data set with added Gaussian noise (k-space SNR

of 1.11 dB) subsampled at a reduction factor of 3.51 for several values of the wavelet regularization

parameter λ and the total variation parameter: 0 (first row), 1 (second row) and 102 (bottom row)

times λ.
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λ=10 λ= 2 103 λ= 5 105 λ= 108

Figure B.27: CSENSE reconstruction of the SIM data set with added Gaussian noise (k-space SNR

of 1.11 dB) subsampled at a reduction factor of 7.11 for several values of the wavelet regularization

parameter λ and the total variation parameter: 0 (first row), 1 (second row) and 102 (bottom row)

times λ.
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B.4 Coil Sensitivity Reconstruction

Figure B.28: Original simulated sensitivity of the SIM data set (top left), low resolution scan

estimates for the BR (center left) and PH (bottom left). In the right column full sampled coil

images for the three data sets are shown. These images serve as references to which the next figures

can be compared to.
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PSfrag replacemen

Figure B.29: Compressive Sampling sensitivity reconstructions for the SIM data set (left column)

and their product with the reference image (right column) for a sampling grid with an acceleration

factor of 3.51. The wavelet l1 regularization parameter values were: 105 (top row), 5 107 (second

row), 5 109 (third row) and 1012 (bottom row).)
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Figure B.30: Compressive Sampling sensitivity reconstructions for the SIM data set (left column)

and their product with the reference image (right column) for a sampling grid with an acceleration

factor of 7.11. The wavelet l1 regularization parameter values were: 105 (top row), 5 107 (second

row), 5 109 (third row) and 1012 (bottom row).
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Figure B.31: Compressive Sampling sensitivity reconstructions for the BR data set (left column)

and their product with the reference image (right column) for a sampling grid with an acceleration

factor of 3.51. The wavelet l1 regularization parameter values were: 0.1 (top row), 2 (second row),

50 (third row) and 103 (bottom row).
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Figure B.32: Compressive Sampling sensitivity reconstructions for the BR data set (left column)

and their product with the reference image (right column) for a sampling grid with an acceleration

factor of 7.11. The wavelet l1 regularization parameter values were: 0.1 (top row), 2 (second row),

50 (third row) and 103 (bottom row).
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Figure B.33: Compressive Sampling sensitivity reconstructions for the PH data set (left column)

and their product with the reference image (right column) for a sampling grid with an acceleration

factor of 3.51. The wavelet l1 regularization parameter values were: 0.1 (top row), 2 (second row),

50 (third row) and 103 (bottom row).
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Figure B.34: Compressive Sampling sensitivity reconstructions for the PH data set (left column)

and their product with the reference image (right column) for a sampling grid with an acceleration

factor of 7.11. The wavelet l1 regularization parameter values were: 0.1 (top row), 2 (second row),

50 (third row) and 103 (bottom row).
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B.5 SHARK Reconstruction

CLEAR Image

λ=10−2 λ=5 10−1 λ=20 λ=103

Figure B.35: SHARK reconstruction of the PH data set subsampled at a reduction factor of 4 with

12 ACS lines and resampled onto a variable density grid designed by a Monte Carlos procedure

(center column in Fig. A.6). The images show reconstructions for several values of the wavelet

regularization parameter λ and the total variation parameter: 0 (second row), 1 (third row) and

102 (bottom) times λ. In the first row the CLEAR reconstruction is shown for comparison.
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CLEAR Image

λ=10−2 λ=5 10−1 λ=20 λ=103

Figure B.36: SHARK reconstruction of the PH data set subsampled at a reduction factor of 4

with 12 ACS lines and resampled onto a grid generated as a combination of a variable density

grid designed by a Monte Carlos procedure and the regular grid (right column in Fig. A.6). The

images show reconstructions for several values of the wavelet regularization parameter λ and the

total variation parameter: 0 (second row), 1 (third row) and 102 (bottom) times λ. In the first row

the CLEAR reconstruction is shown for comparison.

132



Appendix B. Compressive Sampling Regularization Parameters

CLEAR Image

λ=10−2 λ=5 10−1 λ=20 λ=103

Figure B.37: SHARK reconstruction of the PH data set subsampled at a reduction factor of 8 with

14 ACS lines and resampled onto a variable density grid designed by a Monte Carlos procedure

(center column in Fig. A.7). The images show reconstructions for several values of the wavelet

regularization parameter λ and the total variation parameter: 0 (second row), 1 (third row) and

102 (bottom) times λ. In the first row the CLEAR reconstruction is shown for comparison.
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CLEAR Image

λ=10−2 λ=5 10−1 λ=20 λ=103

Figure B.38: SHARK reconstruction of the PH data set subsampled at a reduction factor of 8

with 14 ACS lines and resampled onto a grid generated as a combination of a variable density

grid designed by a Monte Carlos procedure and the regular grid (right column in Fig. A.7). The

images show reconstructions for several values of the wavelet regularization parameter λ and the

total variation parameter: 0 (second row), 1 (third row) and 102 (bottom) times λ. In the first row

the CLEAR reconstruction is shown for comparison.
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CLEAR Image

λ=10−2 λ=5 10−1 λ=20 λ=103

Figure B.39: SHARK reconstruction of the PH data set subsampled at a reduction factor of 8 with

28 ACS lines and resampled onto a variable density grid designed by a Monte Carlos procedure

(center column in Fig. A.8). The images show reconstructions for several values of the wavelet

regularization parameter λ and the total variation parameter: 0 (second row), 1 (third row) and

102 (bottom) times λ. In the first row the CLEAR reconstruction is shown for comparison.
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CLEAR Image

λ=10−2 λ=5 10−1 λ=20 λ=103

Figure B.40: SHARK reconstruction of the PH data set subsampled at a reduction factor of 8

with 28 ACS lines and resampled onto a grid generated as a combination of a variable density

grid designed by a Monte Carlos procedure and the regular grid (right column in Fig. A.8). The

images show reconstructions for several values of the wavelet regularization parameter λ and the

total variation parameter: 0 (second row), 1 (third row) and 102 (bottom) times λ. In the first row

the CLEAR reconstruction is shown for comparison.
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