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Election

I Candidate against candidate

I New York: 8 million

I Goal: Estimate fraction of people who will vote for



Experiment

I True fraction is 0.547

I We ask 1000 people at random

I Outcome:

545! (estimate: 0.545)

I Did we get lucky?
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Poll of 1 000 people (repeated 10 000 times)



Poll of 10 000 people (repeated 10 000 times)



Poll of 100 000 people (repeated 10 000 times)



Question to think about

Does the total population (8 million) matter?



Interesting phenomenon

# voters in poll
#people in the poll

is close to
# voters
# people

Aim of the talk: Understand why this happens



Not so easy

# voters in poll changes every time: its value is uncertain

We need to reason probabilistically

We need mathematical tools to analyze uncertain quantities



Random variable

Mathematical objects that model uncertain quantities

A random variable X has a set of possible outcomes

Sampling X results in one of those outcomes



Probability

Maps outcomes to a number between 0 and 1

The probability of an outcome quantifies how likely it is

Intuitively

P (outcome i) =
#samples equal to outcome i

# samples

when the number of samples is very large



Events

We can group outcomes in sets called events

An event occurs if we sample an outcome belonging to the event

X ∈ {0, 1}, Y ≤ 10, Z ≥ 1.2

The probability of an event quantifies how likely it is



Probability

Intuitively

P (event) =
#times event happens

# samples

when the number of samples is very large

P (X ∈ {0, 3}) ≈ # samples equal to 0 or 3
# samples of X



Properties of probability

Probability is nonnegative, like mass or length



Properties of probability

If events can’t happen simultaneously, we can add their probabilities

P (X ∈ {0, 4, 7}) = P (X = 0) + P (X ∈ {4, 7})

Makes sense:

P (X ∈ {0, 4, 7}) ≈ # samples equal to 0, 4 or 7
# samples of X

=
# samples equal to 0 +# samples equal to 4 or 7

# samples of X
≈ P (X = 0) + P (X ∈ {4, 7})

Also like mass or length
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Properties of probability

The probability of all events that can’t happen simultaneously adds to one

m∑
i=1

P (X = oi ) = 1

where {o1, . . . , om} are the possible outcomes of X

Not like mass or length!



Properties of probability

Makes sense:
m∑
i=1

P (X = oi )

≈
m∑
i=1

# samples equal to oi
# samples of X

=
# samples equal to o1 +# samples equal to o2 + · · ·+# samples equal to om

# samples of X

=
# samples of X
# samples of X

= 1
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Modeling a coin flip

When we flip a coin, it lands heads a fraction p of the time

I Possible outcomes?

0 (tails) or 1 (heads)

I Probability of outcomes?

P (X = 1) = p

P (X = 0) = 1− p
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Modeling a coin flip

When we flip a coin, it lands heads a fraction p of the time

I Possible outcomes? 0 (tails) or 1 (heads)

I Probability of outcomes?

P (X = 1) = p

P (X = 0) = 1− p



Election

We poll a voter at random from a population of T people

Chosen voter is a random variable X

Possible outcomes? 1, 2, . . . , T

Assumption: We are equally likely to pick any voter

Probability that we pick a specific person?



Election

All possible outcomes must sum to one

T∑
i=1

P (X = i) = 1

and

P (X = 1) = P (X = 2) = · · · = P (X = T )

=
1
T



Election

All possible outcomes must sum to one
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i=1

P (X = i) = 1

and

P (X = 1) = P (X = 2) = · · · = P (X = T ) =
1
T



Election

Pick a voter at random from T people from which # are voters

New random variable

V = 1 if voter is voter

otherwise V = 0

Probability that we pick a voter? P (V = 1)



Election

Let’s order the voters, first # are voters

P (V = 1) = P (X ∈ {1, . . . ,# })

=

#∑
i=1

P (X = i)

=
#

T

Just like coin flip with p = # /T
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Election

If T = 8 million and the fraction of voters is 0.547

What is the probability that we choose a voter?

Does this depend on T?



Multiple random variables

We can consider several random variables at the same time

Every time we sample, we sample all the random variables

Events can include any of the random variables

{X = 0 and Y ≤ 10}, {Z = 1.2 or W ∈ {10, 21}}



Probability

The probability of the event still quantifies how likely it is

Same intuition

P (event) =
#times event happens

# samples

when the number of samples is very large

P (X = 0 and Y ≤ 10) ≈ # samples for which X = 0 and Y ≤ 10
# samples of (X ,Y )



Conditional probability

If we know an event B (for example Y ≤ 10)

How likely is that another event A (for example X = 0) also happened?

P (B |A), the conditional probability of B given A



Conditional probability

Intuition

P (event B | event A) = #samples for which A and B happen
# samples for which A happens

when the number of samples is very large

P (X = 0 |Y ≤ 10) ≈ # samples for which X = 0 and Y ≤ 10
# samples for which Y ≤ 10



Chain rule

P (A and B) = P (A)P (B |A)

Makes sense:

P (A)P (B |A) ≈ # A happens
# samples

· # A and B happen
# A happens

=
# A and B happen

# samples
≈ P (A and B)
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Independence

If knowing that A happened does not affect how likely B is

A and B are independent

P (B |A) = P (B)

In that case

P (A and B) = P (A)P (B |A) = P (A)P (B)



Modeling coin flips

When we flip a coin, it lands heads a fraction p of the time

If we flip it n times, what is the probability that k flips are heads?

Assumptions:

I Probability of heads in a single flip is p

I Flips are independent



Modeling coin flips

We model the problem using random variables:

Vi = 1 if ith flip is heads, 0 if it isn’t

V1, V2, . . . , Vn are independent

S = V1 + · · ·+ Vn, number of heads



Example

3 flips, probability of 2 heads?

P (S = 2) = P( {V1 = 1,V2 = 1,V3 = 0}
or {V1 = 1,V2 = 0,V3 = 1}
or {V1 = 0,V2 = 1,V3 = 1})



Example

P (V1 = 1 and V2 = 1 and V3 = 0) = P (V1 = 1)P (V2 = 1)P (V3 = 0)

= p2 (1− p)

P (V1 = 0 and V2 = 1 and V3 = 1) ? Does not depend on order!

In general, k heads and n − k tails in fixed order

P (k heads and n − k tails) = pk (1− p)n−k
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Example

3 flips, probability of 2 heads?

P (S = 2) = P( {V1 = 1,V2 = 1,V3 = 0}
or {V1 = 1,V2 = 0,V3 = 1}
or {V1 = 0,V2 = 1,V3 = 1})

=3p2(1− p)



Modeling coin flips

In general

P (S = k) = # combinations of k heads in n flips · P (k heads in fixed order)

=

(
n

k

)
pk (1− p)n−k

(
n

k

)
:=

n!

k! (n − k)!

S is a binomial random variable with parameters n and p



Binomial random variable n = 100, p = 0.547
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Binomial random variable n = 1000, p = 0.547
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Election

Population of T people with # voters

We poll n voters at random

How many are voters? Random variable S

Assumption 1: We are equally likely to pick any voter every time we poll

Assumption 2: Picks are all independent

What kind of random variable is S?



Election

S is binomial with parameters n and # /T

But we are interested in fraction of voters S/n !

P
(
S

n
=

k

n

)
=

P (S = k)

=

(
n

k

)
pk (1− p)n−k

We can compute exact probability of poll outcome for any n!
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Fraction of voters in poll, n = 100, # /T = 0.547
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Binomial random variable n = 1000, # /T = 0.547
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Mean

Average of a random variable

E (X ) =
∑
i=1

oiP (X = oi )

= o1P (X = o1) + o2P (X = o2) + · · ·+ omP (X = om)

where {o1, . . . , om} are the possible outcomes of X



The mean is the center of mass of the probabilities
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Election

Population of T people with # voters

We poll n voters at random

S = # of voters in poll

What is the average estimate S/n?



Modeling a coin flip

When we flip a coin, it lands heads a fraction p of the time

Random variable X equal to 0 (tails) or 1 (heads)

Mean

E (X ) =

0 · P (X = 0) + 1 · P (X = 1)
= p
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Mean of sum

The sum of the averages is the average of the sums

E (X + Y ) =

m∑
i=1

m∑
j=1

(
oi + o ′j

)
P
(
X = oi ,Y = o ′j

)
=

m∑
i=1

m∑
j=1

oiP
(
X = oi ,Y = o ′j

)
+

m∑
i=1

m∑
j=1

o ′jP
(
X = oi ,Y = o ′j

)
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m∑
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oi
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P
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m∑
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m∑
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(
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= E (X ) + E (Y )
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Election

S is a sum of n coin flips with p = # /T

S =
n∑

i=1

Vi

E (S) = E

(
n∑

i=1

Vi

)

=
n∑

i=1

E (Vi )

=
n #

T

What about S
n ?
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Expectation of scaled random variable

The average of a scaled random variable is just the scaled average

E (c X ) =

m∑
i=1

c oiP (X = oi )

= c
m∑
i=1

oiP (X = oi )

= c E (X )
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Population of T people with # voters

We poll n voters at random

S = # of voters

What is the average estimate S/n?

E (S) =
n #

T

E (S/n) =

#

T
(!)
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Fraction of voters in poll, n = 100, # /T = 0.547
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Fraction of voters in poll n = 1000, # /T = 0.547
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Variance

Square deviation from D := (X − E (X ))2

The variance is the mean of the square deviation

Var (X ) = E (Y )

Standard deviation σX :=
√

Var (X )



Standard deviation ≈ average variation around mean
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Election

Population of T people with # voters

We poll n voters at random

On average

E (S/n) =
#

T

Standard deviation σS/n quantifies average deviation from truth

Key question: Does σS/n decrease as n grows?



Coin flip

Var (X ) = E
(
(X − E (X ))2

)

=
∑

possible values of (X − E (X ))2 · corresponding probability

= (1− p)2 p + p2 (1− p)

= (1− p) p
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Variance of a sum
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Variance of a sum

If X and Y are independent, then

E (XY ) =

m∑
i=1

m∑
j=1

oio
′
jP
(
X = oi ,Y = o ′j

)
=

m∑
i=1

m∑
j=1

oio
′
jP (X = oi )P

(
Y = o ′j

)
= E (X )E (Y )

Variance of X + Y if Y := −X

Not true if not independent!
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Election
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Fraction of voters in poll, n = 100, # /T = 0.547
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Fraction of voters in poll, n = 1000, # /T = 0.547
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Poll of 1 000 people (repeated 10 000 times)



Poll of 10 000 people (repeated 10 000 times)



Poll of 100 000 people (repeated 10 000 times)



Some elections are difficult to predict

I It’s very hard to sample a population uniformly

I Also hard to make samples independent

I Often not interested in just popular vote (e.g. presidential election)


