Hybrid-State Free Precession for Measuring Magnetic Resonance Relaxation Times in the Presence of B_0 Inhomogeneities

Vladimir A. Kobzar¹, Carlos Fernandez-Granda^{1,2}, Jakob Assländer^{3,4}

¹ New York University Center for Data Science, New York, NY, USA

² Courant Institute of Mathematical Sciences, New York University, New York, NY, USA

³ Center for Biomedical Imaging, Dept. of Radiology, New York University School of Medicine, New York, NY, USA

⁴ Center for Advanced Imaging Innovation and Research, New York University School of Medicine, New York, NY, USA

I. Synopsis

Magnetic resonance fingerprinting is a methodology for the quantitative estimation of the relaxation times $T_{1,2}$. An important challenge is to make estimation robust to inhomogeneities of the main magnetic field B_0 . Precession sequences with smoothly varying parameters, such as balanced hybrid-state free precession (bHSFP) sequence, can be optimized for $T_{1,2}$ -encoding performance. Previously, magnetic field deviations were assumed to be determined by a separate experiment. Here we develop a numerically optimized bHSFP sequence that takes into account variations in B_0 with the aim of mitigating bias due to B_0 inhomogeneities. Our numerical results indicate that this approach yields accurate $T_{1,2}$ estimates when B_0 inhomogeneities are unknown.

II. Introduction

In magnetic resonance fingerprinting (MRF) [1], the relaxation times T_1 and T_2 are determined quantitatively by matching the evolution of magnetization signal to a precomputed dictionary of patterns or "fingerprints" of tissues. However, inhomogeneities of the magnetic fields corrupt these estimates, producing for example so-called banding artifacts in the case of sequences with balanced gradient moments [1], [2]. The purpose of this work is to develop a numerically optimized fingerprinting sequence based on the hybrid state framework [2], [3] that incorporates B_0 estimation and mitigates bias due to B_0 inhomogeneities. In particular, the approach succeeds in suppressing banding artifacts.

III. Theory

In reference [2], it was shown that slow flip angle variations lead to a so-called "hybrid state", which allows us to solve the Bloch equation analytically in spherical coordinates. In this state, the entire spin dynamics is captured by the radial component r of the magnetization, which is controlled by the polar angle ϑ . The polar angle ϑ can be approximated [2], [4] by:

$$\sin^2 \vartheta = \frac{\sin^2 \frac{\alpha}{2}}{\sin^2 \frac{\phi}{2} \cdot \cos^2 \frac{\alpha}{2} + \sin^2 \frac{\alpha}{2}}$$

where α denotes the flip angle (except in the vicinity of so-called stop bands, which are given by $|\sin \phi| \ll 1$). The phase

$$\phi = \phi^{nom} + \gamma \Delta B_0 T_R$$

is composed of the phase increment of the radio-frequency (RF) pulses ϕ^{nom} and the phase accumulated during the time T_R between pulses due to inhomogeneities in the main magnetic field. The gyromagnetic ratio is denoted by γ .

Expressing the magnetization in terms of the control parameters and field inhomogeneities makes it possible to optimize the sequence with respect to the T_1 and T_2 parameters, even if ΔB_0 is unknown.

IV. Methods

The Cramer-Rao bound [5], [6] is a lower bound on the error of any unbiased estimator of a parameter of interest. It is, therefore, a useful proxy for the sensitivity of the data with respect to the parameter, which can be minimized to optimize the measurements [7], [8], [9]. Here we follow such an approach to search for an efficient balanced hybrid-state free precession (bHSFP) sequence with anti-periodic boundary conditions (defined by $r(0) = -r(T_C)$, where T_C is the duration of one cycle of the pulse sequence [2]). We use the relative Cramer-Rao bound (rCRB), normalized by the duration of the experiment, as figure of merit and assume that the signal depends on unknown ΔB_0 variation parameters (as well as the magnetization and the relaxation times). We optimize an α pattern using the Broyden-Fletcher-Goldfarb-Shanno algorithm. In the most general approach, one would optimize ϕ^{nom} along with the flip angle pattern. However, we found this approach to show poor convergence behavior. Instead, we implicitly enforce equivalent encoding at all ΔB_0 offsets (within the limits of the RF-hardware) by sweeping through $\gamma \Delta B_0 T_R \in [0, 2\pi]$ while repeating the same α pattern.

For consistency with hybrid state conditions [2], the changes in the flip angles in consecutive RF pulses $\Delta \alpha$ were constrained by

$$|\Delta \alpha| \le \max\left\{\sin^2 \frac{\alpha}{2} - \frac{5}{2} \left(1 - \sqrt{E_2}\right)^2, 0\right\}$$
(1)

where $E_2 = \exp(-T_R/T_2)$.

V. Results and Discussion

The optimized bHSFP sequences exhibit smooth ϑ and α patterns (Figure 1), and the ϑ pattern is similar to one found when neglecting field inhomogeneities ($\Delta B_0 = 0$) [2], [3]. Also when plotting the optimized rCRB as a function of T_C (Figure 2), we observe that the optimal duration $T_C = 3.8$ s is also comparable to the ones found in literature for the idealized case. Lastly, Figure 3 indicates that the sequences optimized for unknown B_0 have similar rCRB as the sequences optimized for known B_0 variations. (Using the latter sequence in a setting when B_0 variations are unknown would have resulted, however, in a significantly higher rCRB.) Moreover, the horizontal lines disappear in Figure 3, which indicates that T_1 and T_2 can be estimated without banding artifacts.

VI. Conclusion and Outlook

Our results indicate that incorporating B_0 variations while designing bHSFP sequences for magnetic resonance fingerprinting is a promising avenue to achieve robust estimates of T_1 and T_2 in the presence of B_0 inhomogeneities. Future work will include validation on phantom and in vivo scans. In addition, we will extend our methodology to account for variations in the RF field B_1 .

VII. Acknowledgements

V.A.K. is supported by the Moore-Sloan Data Science Environment at New York University. C.F. is supported by NSF award DMS-1616340. J.A. is supported by the research grants NIH/NIBIB R21 EB020096 and NIH/NIAMS R01 AR070297, and this work was performed under the rubric of the Center for Advanced Imaging Innovation and Research (CAI2R, www.cai2r.net), a NIBIB Biomedical Technology Resource Center (NIH P41 EB017183).

References

- Dan Ma, Vikas Gulani, Nicole Seiberlich, Kecheng Liu, Jeffrey L. Sunshine, Jeffrey L. Duerk, and Mark A. Griswold. Magnetic resonance fingerprinting. Nature, 495(7440):187–192, 2013.
- Jakob Assländer, Riccardo Lattanzi, Daniel K Sodickson, and Martijn A. Cloos. Hybrid state free precession in nuclear magnetic resonance. arXiv:1807.03424 [physics.med-ph], 2018.
- [3] Jakob Assländer, Daniel K Sodickson, Riccardo Lattanzi, and Martijn A Cloos. Hybrid State Free Precession for Measuring Magnetic Resonance Relaxation Times. In Proc. Intl. Soc. Mag. Reson. Med, 2018.
- [4] Ray Freeman and H. D W Hill. Phase and intensity anomalies in fourier transform NMR. J. Magn. Reson., 4(3):366–383, 1971.
- [5] Calyampudi Radhakrishna Rao. Information and the Accuracy Attainable in the Estimation of Statistical Parameters. Bull. Calcutta Math. Soc., 37(3):81–91, 1945.
- [6] Harald Cramér. Methods of mathematical statistics. Princeton University Press, Princeton, NJ, 1946.
- J.A. Jones, P. Hodgkinson, A.L. Barker, and P.J. Hore. Optimal Sampling Strategies for the Measurement of Spin–Spin Relaxation Times. J. Magn. Reson. Ser. B, 113(1):25–34, 1996.
- [8] J. A. Jones. Optimal sampling strategies for the measurement of relaxation times in proteins. J. Magn. Reson., 126(126):283–286, 1997.
 [9] Bo Zhao, Justin P Haldar, Kawin Setsompop, and Lawrence L Wald. Optimal Experiment Design for Magnetic Resonance Fingerprinting.
- In Eng. Med. Biol. Soc. (EMBC), IEEE 38th Annu. Int. Conf., number 1, pages 453–456, 2016.

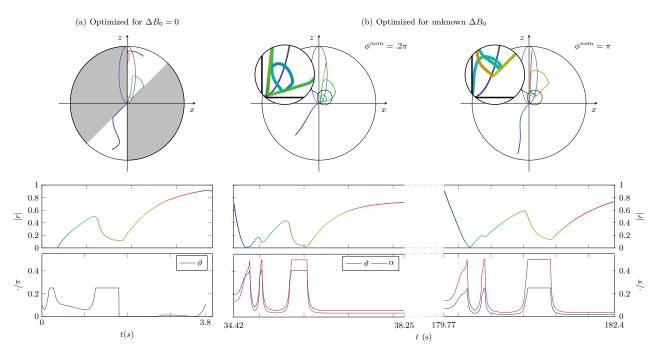


Fig. 1: The dynamics in (a) result from optimizing an α sequence of length $T_C = 3.8$ s where ΔB_0 is assumed to be zero (cf. Fig 4 in [2]). The polar angle was constrained to $0 \le \vartheta \le \pi/4$. The dynamics in (b) result from optimizing the same sequence concatenated 96 times under the assumption that ΔB_0 variations are unknown. In each period of length T_C , a different phase offset ϕ^{nom} is introduced, with ϕ^{nom} uniformly distributed between $-\pi$ and π . The flip angle was constrained to $0 \le \alpha \le \pi/2$, and the changes of α were limited in accordance with (1). The blue ellipse indicates the steady state of balanced steady-state free precession sequences.

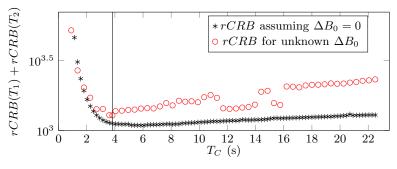


Fig. 2: The bHSFP trajectories described by the relaxation of the Bloch Equations are optimized for different lengths (T_C) of the flip angle α sequences. The rCRB values in the scenario where B_0 variations are unknown indicate that $T_C = 3.8$ s is optimal, as marked by the vertical bar. (These bounds result from a nonconvex optimization where the parameter space grows with T_C , and convergence issues become apparent for larger T_C .) The rCRB in the scenario where B_0 variations are known is also depicted and the optimal $T_C = 3.8$ s is consistent with prior work (cf. Fig. 3 in [2]).

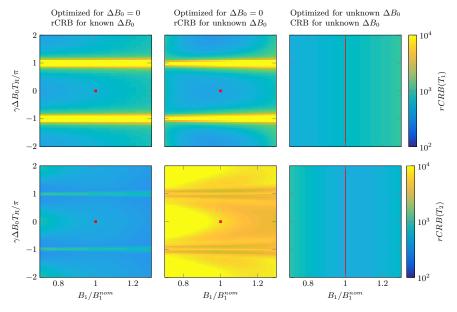


Fig. 3: The performance of the optimized experiments is illustrated through plots of the rCRB values, which provide a lower bound for the noise in the retrieved relaxation times. The performance is illustrated as a function of the magnetic field, which is parameterized by the main magnetic field variation ΔB_0 , and by the RF field variation B_1 . During the optimization, the nominal values of the inhomogeneities were fixed, as shown by the red squares / red lines. The experiments have $T_C = 3.8$ s (cf. Fig. 2). (The rCRB color bar is in log scale.)