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Rank

For any matrix A

dim (col (A)) = dim (row (A))

This is the rank of A



Singular value decomposition

Every rank r real matrix A ∈ Rm×n, has a singular-value decomposition
(SVD) of the form

A =
[
~u1 ~u2 · · · ~ur

]

σ1 0 · · · 0
0 σ2 · · · 0

. . .
0 0 · · · σr



~v T
1

~vT2
...
~vTr


= USV T



Singular value decomposition

I The singular values σ1 ≥ σ2 ≥ · · · ≥ σr are positive real numbers

I The left singular vectors ~u1, ~u2, . . . ~ur form an orthonormal set

I The right singular vectors ~v1, ~v2, . . . ~vr also form an orthonormal set

I The SVD is unique if all the singular values are different

I If σi = σi+1 = . . . = σi+k , then ~ui , . . . , ~ui+k can be replaced by any
orthonormal basis of their span (the same holds for ~vi , . . . , ~vi+k)

I The SVD of an m×n matrix with m ≥ n can be computed in O
(
mn2)



Column and row space

I The left singular vectors ~u1, ~u2, . . . ~ur are a basis for the column space

I The right singular vectors ~v1, ~v2, . . . ~vr are a basis for the row space



Best rank-k approximation

Let USV T be the SVD of a matrix A ∈ Rm×n

The truncated SVD U:,1:kS1:k,1:kV
T
:,1:k is the best rank-k approximation

U:,1:kS1:k,1:kV
T
:,1:k = argmin

{Ã | rank(Ã)=k}

∣∣∣∣∣∣A− Ã
∣∣∣∣∣∣

F
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Motivation

Quantity y [i , j ] depends on indices i and j

We observe examples and want to predict new instances

In collaborative filtering, y [i , j ] is rating given to a movie i by a user j



Collaborative filtering

Y :=

Bob Molly Mary Larry


1 1 5 4 The Dark Knight
2 1 4 5 Spiderman 3
4 5 2 1 Love Actually
5 4 2 1 Bridget Jones’s Diary
4 5 1 2 Pretty Woman
1 2 5 5 Superman 2



Simple model

Assumptions:

I Some movies are more popular in general

I Some users are more generous in general

y [i , j ] ≈ a[i ]b[j ]

I a[i ] quantifies popularity of movie i

I b[j ] quantifies generosity of user j



Rank-1 model

Assume m movies are all rated by n users

Model becomes

Y ≈ ~a ~b T

We can fit it by solving

min
~a∈Rm, ~b∈Rn

∣∣∣∣∣∣Y − ~a ~b T
∣∣∣∣∣∣

F
subject to ||~a||2 = 1

Equivalent to

min
X∈Rm×n

||Y − X ||F subject to rank (X ) = 1
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Rank-1 model

σ1~u1~v
T
1 = arg min

X∈Rm×n
||Y − X ||F subject to rank (X ) = 1

The solution to

min
~a∈Rm, ~b∈Rn

∣∣∣∣∣∣Y − ~a ~b T
∣∣∣∣∣∣

F
subject to ||~a||2 = 1

is

~amin =

~u1

~bmin =

σ1~v1
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Rank-r model

Certain people like certain movies: r factors

y [i , j ] ≈
r∑

l=1

al [i ]bl [j ]

For each factor l

I al [i ]: movie i is positively (> 0), negatively (< 0) or not (≈ 0)
associated to factor l

I bl [j ]: user j likes (> 0), hates (< 0) or is indifferent (≈ 0) to factor l



Rank-r model

Equivalent to

Y ≈ AB, A ∈ Rm×r , B ∈ Rr×n

SVD solves

min
A∈Rm×r ,B∈Rr×n

||Y − AB||F subject to ||~a1||2 = 1, . . . , ||~ar ||2 = 1

Problem: Many possible ways of choosing ~a1, . . . , ~ar , ~b1, . . . , ~br

SVD constrains them to be orthogonal



Collaborative filtering

Y :=

Bob Molly Mary Larry


1 1 5 4 The Dark Knight
2 1 4 5 Spiderman 3
4 5 2 1 Love Actually
5 4 2 1 Bridget Jones’s Diary
4 5 1 2 Pretty Woman
1 2 5 5 Superman 2



SVD

A− µ~1~1T = USV T = U


7.79 0 0 0
0 1.62 0 0
0 0 1.55 0
0 0 0 0.62

V T

µ :=
1
n

m∑
i=1

n∑
j=1

Aij



Rank 1 model

Ā + σ1~u1~v
T
1 =

Bob Molly Mary Larry


1.34 (1) 1.19 (1) 4.66 (5) 4.81 (4) The Dark Knight
1.55 (2) 1.42 (1) 4.45 (4) 4.58 (5) Spiderman 3
4.45 (4) 4.58 (5) 1.55 (2) 1.42 (1) Love Actually
4.43 (5) 4.56 (4) 1.57 (2) 1.44 (1) B.J.’s Diary
4.43 (4) 4.56 (5) 1.57 (1) 1.44 (2) Pretty Woman
1.34 (1) 1.19 (2) 4.66 (5) 4.81 (5) Superman 2



Movies

~a1 =
D. Knight Sp. 3 Love Act. B.J.’s Diary P. Woman Sup. 2

( )−0.45 −0.39 0.39 0.39 0.39 −0.45

Coefficients cluster movies into action (+) and romantic (-)



Users

~b1 =
Bob Molly Mary Larry

( )3.74 4.05 −3.74 −4.05

Coefficients cluster people into action (-) and romantic (+)
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Netflix Prize

? ? ? ?

?

?

??

??

???

?

?



Matrix completion

Bob Molly Mary Larry


1 ? 5 4 The Dark Knight
? 1 4 5 Spiderman 3
4 5 2 ? Love Actually
5 4 2 1 Bridget Jones’s Diary
4 5 1 2 Pretty Woman
1 2 ? 5 Superman 2



Isn’t this completely ill posed?

Can’t we fill in the missing entries arbitrarily?

Yes, but not if matrix is low rank

Then it depends on ≈ r (m + n) parameters

As long as data > parameters recovery is possible (in principle)


1 1 1 1 ? 1
1 1 1 1 1 1
1 1 1 1 1 1
? 1 1 1 1 1
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Matrix cannot be sparse


0 0 0 0 0 0
0 0 0 23 0 0
0 0 0 0 0 0
0 0 0 0 0 0





Singular vectors cannot be sparse


1
1
1
1

 [1 1 1 1
]

+


0
0
0
1

 [1 2 3 4
]

=


1 1 1 1
1 1 1 1
1 1 1 1
2 3 4 5





Incoherence

The matrix must be incoherent: its singular vectors must be spread out

For 1/
√
n ≤ µ ≤ 1

max
1≤i≤r ,1≤j≤m

|Uij | ≤ µ

max
1≤i≤r ,1≤j≤n

|Vij | ≤ µ

for the left U1, . . . ,Ur and right V1, . . . ,Vr singular vectors



Measurements

We must see an entry in each row/column at least
1 1 1 1
? ? ? ?
1 1 1 1
1 1 1 1

 =


1
?
1
1

 [1 1 1 1
]

Assumption: Random sampling (usually does not hold in practice!)



Low-rank matrix estimation

First idea:

min
X∈Rm×n

rank (X ) such that XΩ = y

Ω: indices of revealed entries
y : revealed entries



Convex functions

A function f : Rn → R is convex if for any ~x , ~y ∈ Rn and any θ ∈ (0, 1)

θf (~x) + (1− θ) f (~y) ≥ f (θ~x + (1− θ) ~y)



Convex functions

f (θ~x + (1 − θ)~y)

θf (~x) + (1 − θ)f (~y)

f (~x)

f (~y)



Minimizing convex functions



Minimizing nonconvex functions



The rank is not convex

The rank of matrices in Rn×n interpreted as a function from Rn×n to R
is not convex

X :=

[
1 0
0 0

]
Y :=

[
0 0
0 1

]
For any θ ∈ (0, 1)

rank (θX + (1− θ)Y ) = 2

θ rank (X ) + (1− θ) rank (Y ) = 1



The rank is not convex

The rank of matrices in Rn×n interpreted as a function from Rn×n to R
is not convex

X :=

[
1 0
0 0

]
Y :=

[
0 0
0 1

]
For any θ ∈ (0, 1)

rank (θX + (1− θ)Y )

= 2

θ rank (X ) + (1− θ) rank (Y )

= 1



The rank is not convex

The rank of matrices in Rn×n interpreted as a function from Rn×n to R
is not convex

X :=

[
1 0
0 0

]
Y :=

[
0 0
0 1

]
For any θ ∈ (0, 1)

rank (θX + (1− θ)Y ) = 2

θ rank (X ) + (1− θ) rank (Y )

= 1



The rank is not convex
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Norms are convex

For any ~x , ~y ∈ Rn and any θ ∈ (0, 1)

||θ~x + (1− θ) ~y ||

≤ ||θ~x ||+ ||(1− θ) ~y ||
= θ ||~x ||+ (1− θ) ||~y ||
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Norms are convex

For any ~x , ~y ∈ Rn and any θ ∈ (0, 1)

||θ~x + (1− θ) ~y || ≤ ||θ~x ||+ ||(1− θ) ~y ||
= θ ||~x ||+ (1− θ) ||~y ||



Promoting low-rank structure

Toy problem: Find t such that

M (t) :=

0.5 + t 1 1
0.5 0.5 t
0.5 1− t 0.5

 ,
is low rank

Strategy: Minimize

f (t) := ||M (t)||



Matrix norms

Frobenius norm

||A||F :=

√√√√ m∑
i=1

n∑
j=1

A2
ij =

√√√√min{m,n}∑
i=1

σ2
i

Operator norm

||A|| := max
{||~x ||2=1 | ~x∈Rn}

||A ~x ||2 = σ1

Nuclear norm

||A||∗ :=

min{m,n}∑
i=1

σi



Promoting low-rank structure

1.0 0.5 0.0 0.5 1.0 1.5
t

1.0

1.5

2.0

2.5
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Rank

Operator norm

Frobenius norm

Nuclear norm



Exact recovery

Guarantees by Gross 2011, Candès and Recht 2008, Candès and Tao 2009

min
X∈Rm×n

||X ||∗ such that XΩ = y

achieves exact recovery with high probability as long as the number of
samples is proportional to r (n + m) up to log terms



Low-rank matrix estimation

If data are noisy

min
X∈Rm×n

||XΩ − ~y ||22 + λ ||X ||∗

where λ > 0 is a regularization parameter



Matrix completion

Bob Molly Mary Larry


1 ? 5 4 The Dark Knight
? 1 4 5 Spiderman 3
4 5 2 ? Love Actually
5 4 2 1 Bridget Jones’s Diary
4 5 1 2 Pretty Woman
1 2 ? 5 Superman 2



Matrix completion via nuclear-norm minimization

Bob Molly Mary Larry


1 2 (1) 5 4 The Dark Knight

2 (2) 1 4 5 Spiderman 3
4 5 2 2 (1) Love Actually
5 4 2 1 Bridget Jones’s Diary
4 5 1 2 Pretty Woman
1 2 5 (5) 5 Superman 2



Real data

I Movielens database

I 671 users

I 300 movies

I Training set: 9 135 ratings

I Test set: 1 016



Real data
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Low-rank matrix completion

Intractable problem

min
X∈Rm×n

rank (X ) such that XΩ ≈ ~y

Nuclear norm: convex but computationally expensive



Alternative

I Fix rank k beforehand

I Parametrize the matrix as AB where A ∈ Rm×r and B ∈ Rr×n

I Solve

min
Ã∈Rm×r ,B̃∈Rr×n

∣∣∣∣∣∣(ÃB̃)
Ω
− ~y
∣∣∣∣∣∣

2

by alternating minimization



Alternating minimization

Sequence of least-squares problems (much faster than computing SVDs)

I To compute A(k) fix B(k−1) and solve

min
Ã∈Rm×r

∣∣∣∣∣∣(ÃB(k−1)
)

Ω
− ~y
∣∣∣∣∣∣

2

I To compute B(k) fix A(k) and solve

min
B̃∈Rr×n

∣∣∣∣∣∣(A(k)B̃
)

Ω
− ~y
∣∣∣∣∣∣

2

Theoretical guarantees: Jain, Netrapalli, Sanghavi 2013
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Nonnegative matrix factorization

Nonnegative atoms/coefficients can make results easier to interpret

X ≈ A B, Ai ,j ≥ 0, Bi ,j ≥ 0, for all i , j

Nonconvex optimization problem:

minimize
∣∣∣∣∣∣X − Ã B̃

∣∣∣∣∣∣2
F

subject to Ãi ,j ≥ 0,

B̃i ,j ≥ 0, for all i , j

Ã ∈ Rm×r and B̃ ∈ Rr×n



Face dataset



Faces dataset: Principal component analysis



Faces dataset: Nonnegative matrix factorization



Topic modeling

A :=

singer GDP senate election vote stock bass market band Articles


6 1 1 0 0 1 9 0 8 a
1 0 9 5 8 1 0 1 0 b
8 1 0 1 0 0 9 1 7 c
0 7 1 0 0 9 1 7 0 d
0 5 6 7 5 6 0 7 2 e
1 0 8 5 9 2 0 0 1 f



SVD

A = USV T = U



23.64 0 0 0
0 18.82 0 0 0 0
0 0 14.23 0 0 0
0 0 0 3.63 0 0
0 0 0 0 2.03 0
0 0 0 0 0 1.36

V T



Left singular vectors

a b c d e f
( )U1 = −0.24 −0.47 −0.24 −0.32 −0.58 −0.47
( )U2 = 0.64 −0.23 0.67 −0.03 −0.18 −0.21
( )U3 = −0.08 −0.39 −0.08 0.77 0.28 −0.40



Right singular vectors

singer GDP senate election vote stock bass market band

( )V1 = −0.18 −0.24 −0.51 −0.38 −0.46 −0.34 −0.2 −0.3 −0.22
( )V2 = 0.47 0.01 −0.22 −0.15 −0.25 −0.07 0.63 −0.05 0.49
( )V3 = −0.13 0.47 −0.3 −0.14 −0.37 0.52 −0.04 0.49 −0.07



Nonnegative matrix factorization

X ≈W H

Wi ,j ≥ 0, Hi ,j ≥ 0, for all i , j



Right nonnegative factors

singer GDP senate election vote stock bass market band

( )H1 = 0.34 0 3.73 2.54 3.67 0.52 0 0.35 0.35
( )H2 = 0 2.21 0.21 0.45 0 2.64 0.21 2.43 0.22
( )H3 = 3.22 0.37 0.19 0.2 0 0.12 4.13 0.13 3.43

Interpretations:

I Count atom: Counts for each doc are weighted sum of H1, H2, H3

I Coefficients: They cluster words into politics, music and economics



Left nonnegative factors

a b c d e f
( )W1 = 0.03 2.23 0 0 1.59 2.24
( )W2 = 0.1 0 0.08 3.13 2.32 0
( )W3 = 2.13 0 2.22 0 0 0.03

Interpretations:

I Count atom: Counts for each word are weighted sum of W1, W2, W3

I Coefficients: They cluster docs into politics, music and economics



Sparse PCA

Sparse atoms can make results easier to interpret

X ≈ A B, A sparse

Nonconvex optimization problem:

minimize
∣∣∣∣∣∣X − Ã B̃

∣∣∣∣∣∣2
2

+ λ

k∑
i=1

∣∣∣∣∣∣Ãi

∣∣∣∣∣∣
1

subject to
∣∣∣∣∣∣Ãi

∣∣∣∣∣∣
2

= 1, 1 ≤ i ≤ k

Ã ∈ Rm×r and B̃ ∈ Rr×n



Faces dataset
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Sample mean
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Low-rank model

minimize
365∑
d=1

48∑
h=1

∑
b∈Bd,t

(
S (d , t, b)−

k∑
i=1

Di (d)Ti (t)

)2



Low-rank model

0 4 8 12 16 20 24 28 32 36 40 44

Time of day (half-hour intervals)

0  
20 
40 
60 
80 
100
120
140
160
180
200
220
240
260
280
300
320
340
360

A
g
e
 (

d
a
y
s
)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Fraction of sleep



Low-rank model
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Low-rank model
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Factors
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Low-rank model with nonnegative factors

minimize
365∑
d=1

48∑
h=1

∑
b∈Bd,t

(
S (d , t, b)−

k∑
i=1

Di (d)Ti (t)

)2

subject to Di (d) ≥ 0, Ti (t) ≥ 0 for all i , d , t
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Factors
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RMSE

Mean Low-rank model Nonnegative low-rank model
k=1 k=2 k=3 k=4 k=1 k=2 k=3 k=4

Training 0.3586 0.3663 0.3596 0.3593 0.3591 0.3663 0.3596 0.3593 0.3593
Test 0.4282 0.3640 0.3585 0.3581 0.3579 0.3640 0.3585 0.3581 0.3582



Emergence of circadian rhythm
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