Learning from data using probability

Carlos Fernandez-Granda
www.cims.nyu.edu/~cfgranda

cSplash 2019

Acknowledgements

Support by NSF award DMS-1616340

Voting in the House of Representatives (1984)

Affiliation	Vote 1	Vote 2	Vote 3	\ldots	Vote 16
Republican	No	Yes	No	\ldots	Yes
Democrat	Yes	Yes	Yes	\ldots	-
Republican	No	-	No	\ldots	Yes
Democrat	No	Yes	Yes	\ldots	No
Democrat	Yes	Yes	Yes	\ldots	No
???	Yes	Yes	-	\ldots	No
???	No	Yes	No	\ldots	No

Probabilistic modeling

Probability enables us to quantify uncertainty
How likely is someone to be a democrat?
How likely is someone to vote Yes in Vote 3?
How likely is someone to vote Yes in Vote 3 if they are a republican?

Challenges

How to estimate probabilities from data
How to combine them to make predictions

Random variable

Mathematical objects that model uncertain quantities
A random variable X has a set of possible outcomes

Examples

- Affiliation. Outcomes: Democrat or Republican
- Vote 1. Outcomes: Yes or No

Probability

Maps outcomes to a number between 0 and 1
The probability of an outcome quantifies how likely it is

Estimating probabilities

P $($ Affiliation $=$ Democrat $)=\square$

Estimating probabilities

$P($ Affiliation $=$ Democrat $)=\underline{\text { \#Democrats }}$

Estimating probabilities

$$
P(\text { Affiliation }=\text { Democrat })=\frac{\text { \#Democrats }}{\text { Total }}
$$

Estimating probabilities

$$
\begin{aligned}
\mathrm{P}(\text { Affiliation }=\text { Democrat }) & =\frac{\# \text { Democrats }}{\text { Total }} \\
& =\frac{267}{435}=0.614
\end{aligned}
$$

Estimating probabilities

$$
P(\text { Vote } 1=\text { Yes })=
$$

Estimating probabilities

$$
P(\text { Vote } 1=\mathrm{Yes})=\underline{\# \mathrm{Yes}}
$$

Estimating probabilities

$$
P(\text { Vote } 1=Y e s)=\frac{\# \text { Yes }}{\text { Total }}
$$

Estimating probabilities

$$
\begin{aligned}
\mathrm{P}(\text { Vote } 1=\text { Yes }) & =\frac{\# \text { Yes }}{\text { Total }} \\
& =\frac{187}{423}=0.442
\end{aligned}
$$

Properties of probability

Probability is nonnegative, like mass or length

Properties of probability

The probability of all possible outcomes adds to one

$$
\mathrm{P}(\text { Vote } 1=\text { Yes })+\mathrm{P}(\text { Vote } 1=\mathrm{No})=\square+
$$

Properties of probability

The probability of all possible outcomes adds to one

$$
\mathrm{P}(\text { Vote } 1=\mathrm{Yes})+\mathrm{P}(\text { Vote } 1=\mathrm{No})=\frac{\# \text { Yes }}{\text { Total }}+
$$

Properties of probability

The probability of all possible outcomes adds to one

$$
\mathrm{P}(\text { Vote } 1=\mathrm{Yes})+\mathrm{P}(\text { Vote } 1=\mathrm{No})=\frac{\# \text { Yes }}{\text { Total }}+\frac{\# \text { No }}{\text { Total }}
$$

Properties of probability

The probability of all possible outcomes adds to one

$$
\begin{aligned}
\mathrm{P}(\text { Vote } 1=\text { Yes })+\mathrm{P}(\text { Vote } 1=\mathrm{No}) & =\frac{\# \text { Yes }}{\text { Total }}+\frac{\# \text { No }}{\text { Total }} \\
& =\frac{\text { Total }}{\text { Total }}
\end{aligned}
$$

Properties of probability

The probability of all possible outcomes adds to one

$$
\begin{aligned}
\mathrm{P}(\text { Vote } 1=\text { Yes })+\mathrm{P}(\text { Vote } 1=\mathrm{No}) & =\frac{\# \text { Yes }}{\text { Total }}+\frac{\# \text { No }}{\text { Total }} \\
& =\frac{\text { Total }}{\text { Total }} \\
& =1
\end{aligned}
$$

Properties of probability

The probability of all possible outcomes adds to one

$$
\begin{aligned}
\mathrm{P}(\text { Vote } 1=\text { Yes })+\mathrm{P}(\text { Vote } 1=\mathrm{No}) & =\frac{\# \text { Yes }}{\text { Total }}+\frac{\# \text { No }}{\text { Total }} \\
& =\frac{\text { Total }}{\text { Total }} \\
& =1
\end{aligned}
$$

Not like mass or length!

Multiple random variables

We can consider several random variables at the same time
$\mathrm{P}($ Affiliation $=\mathrm{R}$ and Vote $1=$ Yes $)=$

Multiple random variables

We can consider several random variables at the same time

$$
P(\text { Affiliation }=R \text { and Vote } 1=Y e s)=\underline{\# R \text { and Yes }}
$$

Multiple random variables

We can consider several random variables at the same time

$$
\mathrm{P}(\text { Affiliation }=\mathrm{R} \text { and Vote } 1=\mathrm{Yes})=\frac{\# \mathrm{R} \text { and Yes }}{\text { Total }}
$$

Multiple random variables

We can consider several random variables at the same time

$$
\begin{aligned}
P(\text { Affiliation }=R \text { and Vote } 1=Y e s) & =\frac{\# R \text { and Yes }}{\text { Total }} \\
& =\frac{31}{423}=0.073
\end{aligned}
$$

Conditional probability

Quantifies uncertainty if we have partial information
$P($ Vote $1=$ Yes \mid Affiliation $=R)=$

Conditional probability

Quantifies uncertainty if we have partial information
$P($ Vote $1=$ Yes $\mid A f f i l i a t i o n ~=R)=\underline{\# Y e s ~ a n d ~} R$

Conditional probability

Quantifies uncertainty if we have partial information

$$
P(\text { Vote } 1=\text { Yes } \mid \text { Affiliation }=R)=\frac{\# Y e s \text { and } R}{\# R}
$$

Conditional probability

Quantifies uncertainty if we have partial information

$$
\begin{aligned}
P(\text { Vote } 1=\text { Yes } \mid \text { Affiliation }=R) & =\frac{\# Y e s \text { and } R}{\# R} \\
& =\frac{31}{168}=0.185
\end{aligned}
$$

Chain rule

$$
\mathrm{P}(X=A \text { and } Y=B)=\mathrm{P}(X=A) \mathrm{P}(Y=B \mid X=A)
$$

Chain rule

$$
\mathrm{P}(X=A \text { and } Y=B)=\mathrm{P}(X=A) \mathrm{P}(Y=B \mid X=A)
$$

Proof:

$$
\mathrm{P}(X=A) \mathrm{P}(Y=B \mid X=A)=
$$

Chain rule

$$
\mathrm{P}(X=A \text { and } Y=B)=\mathrm{P}(X=A) \mathrm{P}(Y=B \mid X=A)
$$

Proof:

$$
\mathrm{P}(X=A) \mathrm{P}(Y=B \mid X=A)=\frac{\# X=A}{\text { Total }} .
$$

Chain rule

$$
\mathrm{P}(X=A \text { and } Y=B)=\mathrm{P}(X=A) \mathrm{P}(Y=B \mid X=A)
$$

Proof:

$$
\mathrm{P}(X=A) \mathrm{P}(Y=B \mid X=A)=\frac{\# X=A}{\text { Total }} \cdot \frac{\# Y=B \text { and } X=A}{\# X=A}
$$

Chain rule

$$
\mathrm{P}(X=A \text { and } Y=B)=\mathrm{P}(X=A) \mathrm{P}(Y=B \mid X=A)
$$

Proof:

$$
\begin{aligned}
\mathrm{P}(X=A) \mathrm{P}(Y=B \mid X=A) & =\frac{\# X=A}{\text { Total }} \cdot \frac{\# Y=B \text { and } X=A}{\# X=A} \\
& =\frac{\# Y=B \text { and } X=A}{\text { Total }}
\end{aligned}
$$

Chain rule

$$
\mathrm{P}(X=A \text { and } Y=B)=\mathrm{P}(X=A) \mathrm{P}(Y=B \mid X=A)
$$

Proof:

$$
\begin{aligned}
\mathrm{P}(X=A) \mathrm{P}(Y=B \mid X=A) & =\frac{\# X=A}{\text { Total }} \cdot \frac{\# Y=B \text { and } X=A}{\# X=A} \\
& =\frac{\# Y=B \text { and } X=A}{\text { Total }} \\
& =\mathrm{P}(X=A \text { and } Y=B)
\end{aligned}
$$

Predicting affiliation

Affiliation	Vote 1	Vote 2	Vote 3	\ldots	Vote 16
Republican	No	Yes	No	\ldots	Yes
Democrat	Yes	Yes	Yes	\ldots	-
Republican	No	-	No	\ldots	Yes
Democrat	No	Yes	Yes	\ldots	No
Democrat	Yes	Yes	Yes	\ldots	No
???	Yes	Yes	-	\ldots	No
???	No	Yes	No	\ldots	No

Predicting affiliation

Goal: Compute probability of Affiliation conditioned on Votes
By the chain rule

$$
\begin{aligned}
& \mathrm{P}(\mathrm{Aff}=\mathrm{R} \mid \mathrm{V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N}) \\
& \quad=\frac{\mathrm{P}(\mathrm{Aff}=\mathrm{R} \text { and } \mathrm{V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N})}{\mathrm{P}(\mathrm{~V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N})}
\end{aligned}
$$

Predicting affiliation

Goal: Compute probability of Affiliation conditioned on Votes
By the chain rule

$$
\begin{aligned}
& \mathrm{P}(\mathrm{Aff}=\mathrm{R} \mid \mathrm{V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N}) \\
& \quad=\frac{\mathrm{P}(\mathrm{Aff}=\mathrm{R} \text { and } \mathrm{V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N})}{\mathrm{P}(\mathrm{~V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N})}
\end{aligned}
$$

Problem: How do we estimate these probabilities?

Predicting affiliation

$$
\mathrm{P}(\mathrm{~V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N})
$$

Predicting affiliation

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N}) \\
& \quad=\frac{\# \mathrm{~V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N}}{\text { Total }}
\end{aligned}
$$

Predicting affiliation

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N}) \\
& \quad=\frac{\mathrm{V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N}}{\text { Total }}
\end{aligned}
$$

Problem: Many different possibilities!

Predicting affiliation

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N}) \\
& \quad=\frac{\mathrm{V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N}}{\text { Total }}
\end{aligned}
$$

Problem: Many different possibilities! $\left(2^{16}=65,536\right)$

Predicting affiliation

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N}) \\
& \quad=\frac{\# \mathrm{~V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N}}{\text { Total }}
\end{aligned}
$$

Problem: Many different possibilities! $\left(2^{16}=65,536\right)$

There's only 435 politicians...

Predicting affiliation

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N}) \\
& \quad=\frac{\# \mathrm{~V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N}}{\text { Total }}
\end{aligned}
$$

Problem: Many different possibilities! $\left(2^{16}=65,536\right)$
There's only 435 politicians...
Most politicians have unique sequence of votes (304 out of 435)

Predicting affiliation

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N}) \\
& \quad=\frac{\# \mathrm{~V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N}}{\text { Total }} \\
& \quad=\text { mostly } 0 \ldots
\end{aligned}
$$

Problem: Many different possibilities! $\left(2^{16}=65,536\right)$
There's only 435 politicians...
Most politicians have unique sequence of votes (304 out of 435)

Independence

If knowing that $X=A$ happened does not affect how likely it is that $Y=B$ then X and Y are independent

$$
\mathrm{P}(Y=B \mid X=A)=\mathrm{P}(Y=B)
$$

Independence

If knowing that $X=A$ happened does not affect how likely it is that $Y=B$ then X and Y are independent

$$
\mathrm{P}(Y=B \mid X=A)=\mathrm{P}(Y=B)
$$

In that case

$$
\mathrm{P}(X=A \text { and } Y=B)
$$

Independence

If knowing that $X=A$ happened does not affect how likely it is that $Y=B$ then X and Y are independent

$$
\mathrm{P}(Y=B \mid X=A)=\mathrm{P}(Y=B)
$$

In that case

$$
\mathrm{P}(X=A \text { and } Y=B)=\mathrm{P}(X=A) \mathrm{P}(Y=B \mid X=A)
$$

Independence

If knowing that $X=A$ happened does not affect how likely it is that $Y=B$ then X and Y are independent

$$
\mathrm{P}(Y=B \mid X=A)=\mathrm{P}(Y=B)
$$

In that case

$$
\begin{aligned}
\mathrm{P}(X=A \text { and } Y=B)=\mathrm{P}(X & =A) \mathrm{P}(Y=B \mid X=A) \\
& =\mathrm{P}(X=A) \mathrm{P}(Y=B)
\end{aligned}
$$

Independence

If votes are independent

$$
\begin{aligned}
& P(V 1=Y \text { and } V 2=Y \text { and } \ldots V 16=N) \\
& \quad=P(V 1=Y) P(V 2=Y) \ldots P(V 16=N)
\end{aligned}
$$

Are votes independent?

$$
P(\text { Vote } 4=Y e s)=0.505
$$

$$
P(\text { Vote } 11=\text { Yes })=0.423
$$

$P($ Vote $4=$ Yes and Vote $11=$ Yes $)=0.378$

Are votes independent?

$$
P(\text { Vote } 4=Y e s)=0.505
$$

$$
\mathrm{P}(\text { Vote } 11=\mathrm{Yes})=0.423
$$

$P($ Vote $4=$ Yes and Vote $11=$ Yes $)=0.378$
$\mathrm{P}($ Vote $4=$ Yes $) \mathrm{P}($ Vote $11=$ Yes $)=$

Are votes independent?

$$
P(\text { Vote } 4=Y e s)=0.505
$$

$$
\mathrm{P}(\text { Vote } 11=\mathrm{Yes})=0.423
$$

$P($ Vote $4=$ Yes and Vote $11=$ Yes $)=0.378$

$$
P(\text { Vote } 4=\text { Yes }) P(\text { Vote } 11=\mathrm{Yes})=0.214
$$

Chain rule

$$
\mathrm{P}(\mathrm{X}=\mathrm{A} \text { and } \mathrm{Y}=\mathrm{B} \mid \mathrm{Z}=\mathrm{C})=\mathrm{P}(X=A \mid Z=\mathrm{C}) \mathrm{P}(\mathrm{Y}=\mathrm{B} \mid \mathrm{X}=\mathrm{A} \text { and } \mathrm{Z}=\mathrm{C})
$$

Chain rule

$$
\mathrm{P}(\mathrm{X}=\mathrm{A} \text { and } \mathrm{Y}=\mathrm{B} \mid \mathrm{Z}=\mathrm{C})=\mathrm{P}(X=A \mid Z=\mathrm{C}) \mathrm{P}(\mathrm{Y}=\mathrm{B} \mid \mathrm{X}=\mathrm{A} \text { and } \mathrm{Z}=\mathrm{C})
$$

Proof:

$$
\begin{aligned}
& \mathrm{P}(X=A \mid Z=C) \mathrm{P}(\mathrm{Y}=\mathrm{B} \mid \mathrm{X}=\mathrm{A} \text { and } \mathrm{Z}=\mathrm{C}) \\
& \quad=
\end{aligned}
$$

Chain rule

$$
\mathrm{P}(\mathrm{X}=\mathrm{A} \text { and } \mathrm{Y}=\mathrm{B} \mid \mathrm{Z}=\mathrm{C})=\mathrm{P}(X=A \mid Z=\mathrm{C}) \mathrm{P}(\mathrm{Y}=\mathrm{B} \mid \mathrm{X}=\mathrm{A} \text { and } \mathrm{Z}=\mathrm{C})
$$

Proof:

$$
\begin{aligned}
& \mathrm{P}(X=A \mid Z=C) \mathrm{P}(\mathrm{Y}=\mathrm{B} \mid \mathrm{X}=\mathrm{A} \text { and } \mathrm{Z}=\mathrm{C}) \\
& \quad=\frac{\# X=A \text { and } Z=C}{\# Z=C} .
\end{aligned}
$$

Chain rule

$$
\mathrm{P}(\mathrm{X}=\mathrm{A} \text { and } \mathrm{Y}=\mathrm{B} \mid \mathrm{Z}=\mathrm{C})=\mathrm{P}(X=A \mid Z=\mathrm{C}) \mathrm{P}(\mathrm{Y}=\mathrm{B} \mid \mathrm{X}=\mathrm{A} \text { and } \mathrm{Z}=\mathrm{C})
$$

Proof:

$$
\begin{aligned}
& \mathrm{P}(X=A \mid Z=C) \mathrm{P}(\mathrm{Y}=\mathrm{B} \mid \mathrm{X}=\mathrm{A} \text { and } \mathrm{Z}=\mathrm{C}) \\
& \quad=\frac{\# X=A \text { and } Z=C}{\# Z=C} \cdot \frac{\# Y=B \text { and } X=A \text { and } Z=C}{\# X=A \text { and } Z=C}
\end{aligned}
$$

Chain rule

$$
\mathrm{P}(\mathrm{X}=\mathrm{A} \text { and } \mathrm{Y}=\mathrm{B} \mid \mathrm{Z}=\mathrm{C})=\mathrm{P}(\mathrm{X}=\mathrm{A} \mid \mathrm{Z}=\mathrm{C}) \mathrm{P}(\mathrm{Y}=\mathrm{B} \mid \mathrm{X}=\mathrm{A} \text { and } \mathrm{Z}=\mathrm{C})
$$

Proof:

$$
\begin{aligned}
& \mathrm{P}(X=A \mid Z=C) \mathrm{P}(\mathrm{Y}=\mathrm{B} \mid \mathrm{X}=\mathrm{A} \text { and } \mathrm{Z}=\mathrm{C}) \\
& \quad=\frac{\# X=A \text { and } Z=C}{\# Z=C} \cdot \frac{\# Y=B \text { and } X=A \text { and } Z=C}{\# X=A \text { and } Z=C} \\
& \quad=\frac{\# Y=B \text { and } X=A \text { and } Z=C}{\# Z=C}
\end{aligned}
$$

Chain rule

$$
\mathrm{P}(\mathrm{X}=\mathrm{A} \text { and } \mathrm{Y}=\mathrm{B} \mid \mathrm{Z}=\mathrm{C})=\mathrm{P}(\mathrm{X}=\mathrm{A} \mid \mathrm{Z}=\mathrm{C}) \mathrm{P}(\mathrm{Y}=\mathrm{B} \mid \mathrm{X}=\mathrm{A} \text { and } \mathrm{Z}=\mathrm{C})
$$

Proof:

$$
\begin{aligned}
& \mathrm{P}(X=A \mid Z=C) \mathrm{P}(\mathrm{Y}=\mathrm{B} \mid \mathrm{X}=\mathrm{A} \text { and } \mathrm{Z}=\mathrm{C}) \\
& \quad=\frac{\# X=A \text { and } Z=C}{\# Z=C} \cdot \frac{\# Y=B \text { and } X=A \text { and } Z=C}{\# X=A \text { and } Z=C} \\
& \quad=\frac{\# Y=B \text { and } X=A \text { and } Z=C}{\# Z=C} \\
& \quad=\mathrm{P}(\mathrm{X}=\mathrm{A} \text { and } \mathrm{Y}=\mathrm{B} \mid \mathrm{Z}=\mathrm{C})
\end{aligned}
$$

Conditional independence

If knowing that $X=A$ happened does not affect how likely it is that $Y=B$ if $Z=C$, then X and Y are independent conditioned on $Z=C$

$$
\mathrm{P}(Y=B \mid X=A \text { and } Z=C)=\mathrm{P}(Y=B \mid Z=C)
$$

Conditional independence

If knowing that $X=A$ happened does not affect how likely it is that $Y=B$ if $Z=C$, then X and Y are independent conditioned on $Z=C$

$$
\mathrm{P}(Y=B \mid X=A \text { and } Z=C)=\mathrm{P}(Y=B \mid Z=C)
$$

In that case

Conditional independence

If knowing that $X=A$ happened does not affect how likely it is that $Y=B$ if $Z=C$, then X and Y are independent conditioned on $Z=C$

$$
\mathrm{P}(Y=B \mid X=A \text { and } Z=C)=\mathrm{P}(Y=B \mid Z=C)
$$

In that case
$P(X=A$ and $Y=B \mid Z=C)$

Conditional independence

If knowing that $X=A$ happened does not affect how likely it is that $Y=B$ if $Z=C$, then X and Y are independent conditioned on $Z=C$

$$
\mathrm{P}(Y=B \mid X=A \text { and } Z=C)=\mathrm{P}(Y=B \mid Z=C)
$$

In that case

$$
\mathrm{P}(\mathrm{X}=\mathrm{A} \text { and } \mathrm{Y}=\mathrm{B} \mid \mathrm{Z}=\mathrm{C})=\mathrm{P}(X=A \mid Z=\mathrm{C}) \mathrm{P}(\mathrm{Y}=\mathrm{B} \mid \mathrm{X}=\mathrm{A} \text { and } \mathrm{Z}=\mathrm{C})
$$

Conditional independence

If knowing that $X=A$ happened does not affect how likely it is that $Y=B$ if $Z=C$, then X and Y are independent conditioned on $Z=C$

$$
\mathrm{P}(Y=B \mid X=A \text { and } Z=C)=\mathrm{P}(Y=B \mid Z=C)
$$

In that case

$$
\begin{aligned}
\mathrm{P}(\mathrm{X}=\mathrm{A} \text { and } \mathrm{Y}=\mathrm{B} \mid \mathrm{Z}=\mathrm{C}) & =\mathrm{P}(X=A \mid Z=C) \mathrm{P}(\mathrm{Y}=\mathrm{B} \mid \mathrm{X}=\mathrm{A} \text { and } \mathrm{Z}=\mathrm{C}) \\
& =\mathrm{P}(X=A \mid Z=C) \mathrm{P}(Y=B \mid Z=C)
\end{aligned}
$$

Conditional independence

If votes are conditionally independent given affiliation

$$
\begin{aligned}
& P(\mathrm{~V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N} \mid \mathrm{Aff}=\mathrm{R}) \\
& \quad=\mathrm{P}(\mathrm{~V} 1=\mathrm{Y} \mid \mathrm{Aff}=\mathrm{R}) \mathrm{P}(\mathrm{~V} 2=\mathrm{Y} \mid \mathrm{Aff}=\mathrm{R}) \ldots \mathrm{P}(\mathrm{~V} 16=\mathrm{N} \mid \mathrm{Aff}=\mathrm{R})
\end{aligned}
$$

$$
\begin{aligned}
& P(\mathrm{~V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N} \mid \mathrm{Aff}=\mathrm{D}) \\
& \quad=\mathrm{P}(\mathrm{~V} 1=\mathrm{Y} \mid \text { Aff }=\mathrm{D}) \mathrm{P}(\mathrm{~V} 2=\mathrm{Y} \mid \text { Aff }=\mathrm{D}) \ldots \mathrm{P}(\mathrm{~V} 16=\mathrm{N} \mid \text { Aff }=\mathrm{D})
\end{aligned}
$$

Are votes conditionally independent?

$$
\begin{gathered}
P(\text { Vote } 4=\text { Yes } \mid \text { Aff }=R)=0.952 \\
P(\text { Vote } 11=\text { Yes } \mid \text { Aff }=R)=0.871
\end{gathered}
$$

$P($ Vote $4=$ Yes and Vote $11=$ Yes \mid Aff $=R)=0.851$

Are votes conditionally independent?

$$
\mathrm{P}(\text { Vote } 4=\mathrm{Yes} \mid \mathrm{Aff}=\mathrm{R})=0.952
$$

$$
P(\text { Vote } 11=\text { Yes } \mid \text { Aff }=R)=0.871
$$

$P($ Vote $4=$ Yes and Vote $11=$ Yes \mid Aff $=R)=0.851$

P (Vote $4=$ Yes \mid Aff $=R) P($ Vote $11=$ Yes \mid Aff $=R)=$

Are votes conditionally independent?

$$
\begin{gathered}
P(\text { Vote } 4=\text { Yes } \mid \text { Aff }=R)=0.952 \\
P(\text { Vote } 11=\text { Yes } \mid \text { Aff }=R)=0.871
\end{gathered}
$$

$P($ Vote $4=$ Yes and Vote $11=$ Yes $\mid A f f=R)=0.851$
$P($ Vote $4=$ Yes \mid Aff $=R) P($ Vote $11=$ Yes \mid Aff $=R)=0.829$

Are votes conditionally independent?

$$
\begin{gathered}
P(\text { Vote } 4=\text { Yes } \mid A f f=D)=0.216 \\
P(\text { Vote } 11=\text { Yes } \mid \text { Aff }=D)=0.145
\end{gathered}
$$

$P($ Vote $4=$ Yes and Vote $11=$ Yes \mid Aff $=D)=0.075$

Are votes conditionally independent?

$$
P(\text { Vote } 4=\text { Yes } \mid A f f=D)=0.216
$$

$$
\mathrm{P}(\text { Vote } 11=\text { Yes } \mid \text { Aff }=\mathrm{D})=0.145
$$

$$
P(\text { Vote } 4=\text { Yes and Vote } 11=\text { Yes } \mid \text { Aff }=D)=0.075
$$

$P($ Vote $4=$ Yes \mid Aff $=D) P($ Vote $11=$ Yes \mid Aff $=D)=$

Are votes conditionally independent?

$$
P(\text { Vote } 4=\text { Yes } \mid A f f=D)=0.216
$$

$$
\mathrm{P}(\text { Vote } 11=\text { Yes } \mid \text { Aff }=\mathrm{D})=0.145
$$

$P($ Vote $4=$ Yes and Vote $11=$ Yes \mid Aff $=D)=0.075$
$P($ Vote $4=$ Yes \mid Aff $=D) P($ Vote $11=$ Yes \mid Aff $=D)=0.031$

Conditional probability of YES given affiliation

	V 1	V 2	V 3	V 4	V 5	V 6	V 7	V 8
R	0.19	0.50	0.14	0.99	0.95	0.90	0.24	0.15
D	0.61	0.50	0.89	0.05	0.22	0.47	0.78	0.83

	V 9	V 10	V 11	V 12	V 13	V 14	V 15	V 16
R	0.11	0.55	0.14	0.87	0.86	0.98	0.09	0.66
D	0.76	0.47	0.51	0.15	0.29	0.35	0.64	0.94

Predicting affiliation

By the chain rule

$$
\begin{aligned}
& \mathrm{P}(\mathrm{Aff}=\mathrm{R} \mid \mathrm{V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N}) \\
& \quad=\frac{\mathrm{P}(\mathrm{Aff}=\mathrm{R} \text { and } \mathrm{V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N})}{\mathrm{P}(\mathrm{~V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N})}
\end{aligned}
$$

Approximation

$$
\begin{aligned}
& \mathrm{P}(\mathrm{Aff}=\mathrm{R} \text { and } \mathrm{V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N}) \\
& \quad=\mathrm{P}(\mathrm{Aff}=\mathrm{R}) \mathrm{P}(\mathrm{~V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N} \mid \text { Aff }=\mathrm{R}) \\
& \quad \approx \mathrm{P}(\mathrm{Aff}=\mathrm{R}) \mathrm{P}(\mathrm{~V} 1=\mathrm{Y} \mid \mathrm{Aff}=\mathrm{R}) \mathrm{P}(\mathrm{~V} 2=\mathrm{Y} \mid \text { Aff }=\mathrm{R}) \ldots \mathrm{P}(\mathrm{~V} 16=\mathrm{N} \mid \text { Aff }=\mathrm{R})
\end{aligned}
$$

Approximation

$$
\begin{aligned}
& P(A f f=R \text { and } V 1=Y \text { and } V 2=Y \text { and } \ldots V 16=N) \\
& \quad=P(A f f=R) P(V 1=Y \text { and } V 2=Y \text { and } \ldots V 16=N \mid A f f=R) \\
& \quad \approx P(A f f=R) P(V 1=Y \mid A f f=R) P(V 2=Y \mid A f f=R) \ldots P(V 16=N \mid A f f=R)
\end{aligned}
$$

What about

$$
\mathrm{P}(\mathrm{~V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N}) \text { ? }
$$

Law of total probability

If X equals A or B

$$
\mathrm{P}(Y=C)=\mathrm{P}(Y=C \text { and } X=A)+\mathrm{P}(Y=C \text { and } X=B)
$$

Law of total probability

If X equals A or B

$$
\mathrm{P}(Y=C)=\mathrm{P}(Y=C \text { and } X=A)+\mathrm{P}(Y=C \text { and } X=B)
$$

Proof:

$$
\begin{aligned}
& \mathrm{P}(Y=C \text { and } X=A)+\mathrm{P}(Y=C \text { and } X=B) \\
& \quad=
\end{aligned}
$$

Law of total probability

If X equals A or B

$$
\mathrm{P}(Y=C)=\mathrm{P}(Y=C \text { and } X=A)+\mathrm{P}(Y=C \text { and } X=B)
$$

Proof:

$$
\begin{aligned}
& \mathrm{P}(Y=C \text { and } X=A)+\mathrm{P}(Y=C \text { and } X=B) \\
& \quad=\frac{\# Y=C \text { and } X=A}{\text { Total }}+\frac{\# Y=C \text { and } X=B}{\text { Total }}
\end{aligned}
$$

Law of total probability

If X equals A or B

$$
\mathrm{P}(Y=C)=\mathrm{P}(Y=C \text { and } X=A)+\mathrm{P}(Y=C \text { and } X=B)
$$

Proof:

$$
\begin{aligned}
& \mathrm{P}(Y=C \text { and } X=A)+\mathrm{P}(Y=C \text { and } X=B) \\
&=\frac{\# Y=C \text { and } X=A}{\text { Total }}+\frac{\# Y=C \text { and } X=B}{\text { Total }} \\
& \quad=\frac{\# Y=C}{\text { Total }}
\end{aligned}
$$

Law of total probability

If X equals A or B

$$
\mathrm{P}(Y=C)=\mathrm{P}(Y=C \text { and } X=A)+\mathrm{P}(Y=C \text { and } X=B)
$$

Proof:

$$
\begin{aligned}
\mathrm{P} & (Y=C \text { and } X=A)+\mathrm{P}(Y=C \text { and } X=B) \\
& =\frac{\# Y=C \text { and } X=A}{\text { Total }}+\frac{\# Y=C \text { and } X=B}{\text { Total }} \\
& =\frac{\# Y=C}{\text { Total }} \\
& =\mathrm{P}(Y=C)
\end{aligned}
$$

Law of total probability

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N}) \\
& \quad=\mathrm{P}(\mathrm{Aff}=\mathrm{R} \text { and } \mathrm{V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N}) \\
& \quad+\mathrm{P}(\mathrm{Aff}=\mathrm{D} \text { and } \mathrm{V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N})
\end{aligned}
$$

Law of total probability

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N}) \\
& \quad=\mathrm{P}(\mathrm{Aff}=\mathrm{R} \text { and } \mathrm{V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N}) \\
& \quad+\mathrm{P}(\mathrm{Aff}=\mathrm{D} \text { and } \mathrm{V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N})
\end{aligned}
$$

$$
\begin{aligned}
& P(A f f=R \text { and } V 1=Y \text { and } V 2=Y \text { and } \ldots V 16=N) \\
& \quad \approx P(A f f=R) P(V 1=Y \mid A f f=R) P(V 2=Y \mid A f f=R) \ldots P(V 16=N \mid A f f=R)
\end{aligned}
$$

$$
\mathrm{P}(\mathrm{Aff}=\mathrm{D} \text { and } \mathrm{V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N})
$$

$$
\approx P(\mathrm{Aff}=\mathrm{D}) \mathrm{P}(\mathrm{~V} 1=\mathrm{Y} \mid \mathrm{Aff}=\mathrm{D}) \mathrm{P}(\mathrm{~V} 2=\mathrm{Y} \mid \mathrm{Aff}=\mathrm{D}) \ldots \mathrm{P}(\mathrm{~V} 16=\mathrm{N} \mid \mathrm{Aff}=\mathrm{D})
$$

Naive Bayes

$$
\begin{aligned}
& \mathrm{P}(\mathrm{Aff}=\mathrm{R} \mid \mathrm{V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N}) \\
& \quad=\frac{\mathrm{P}(\mathrm{Aff}=\mathrm{R} \text { and } \mathrm{V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N})}{\mathrm{P}(\mathrm{~V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N})}
\end{aligned}
$$

Naive Bayes

$$
\begin{aligned}
& \mathrm{P}(\mathrm{Aff}=\mathrm{R} \mid \mathrm{V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N}) \\
& \quad=\frac{\mathrm{P}(\mathrm{Aff}=\mathrm{R} \text { and } \mathrm{V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N})}{\mathrm{P}(\mathrm{~V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N})}
\end{aligned}
$$

$$
\begin{aligned}
& P(A f f=R \text { and } V 1=Y \text { and } V 2=Y \text { and } \ldots V 16=N) \\
& \quad \approx P(A f f=R) P(V 1=Y \mid A f f=R) P(V 2=Y \mid A f f=R) \ldots P(V 16=N \mid A f f=R)
\end{aligned}
$$

Naive Bayes

$$
\begin{aligned}
& \mathrm{P}(\mathrm{Aff}=\mathrm{R} \mid \mathrm{V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N}) \\
& \quad=\frac{\mathrm{P}(\mathrm{Aff}=\mathrm{R} \text { and } \mathrm{V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N})}{\mathrm{P}(\mathrm{~V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N})}
\end{aligned}
$$

$$
\begin{aligned}
& P(A f f=R \text { and } V 1=Y \text { and } V 2=Y \text { and } \ldots V 16=N) \\
& \quad \approx P(A f f=R) P(V 1=Y \mid A f f=R) P(V 2=Y \mid A f f=R) \ldots P(V 16=N \mid A f f=R) \\
& P(A f f=R \text { and } V 1=Y \text { and } V 2=Y \text { and } \ldots V 16=N) \\
& \quad=P(A f f=R \text { and } V 1=Y \text { and } V 2=Y \text { and } \ldots V 16=N) \\
& \quad+P(A f f=D \text { and } V 1=Y \text { and } V 2=Y \text { and } \ldots V 16=N)
\end{aligned}
$$

Naive Bayes

$$
\begin{aligned}
& \mathrm{P}(\mathrm{Aff}=\mathrm{R} \mid \mathrm{V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N}) \\
& \quad=\frac{\mathrm{P}(\mathrm{Aff}=\mathrm{R} \text { and } \mathrm{V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N})}{\mathrm{P}(\mathrm{~V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N})}
\end{aligned}
$$

$$
\begin{aligned}
& P(A f f=R \text { and } V 1=Y \text { and } V 2=Y \text { and } \ldots V 16=N) \\
& \quad \approx P(A f f=R) P(V 1=Y \mid A f f=R) P(V 2=Y \mid A f f=R) \ldots P(V 16=N \mid A f f=R) \\
& P(A f f=R \text { and } V 1=Y \text { and } V 2=Y \text { and } \ldots V 16=N) \\
& \quad=P(A f f=R \text { and } V 1=Y \text { and } V 2=Y \text { and } \ldots V 16=N) \\
& \quad+P(A f f=D \text { and } V 1=Y \text { and } V 2=Y \text { and } \ldots V 16=N)
\end{aligned}
$$

$$
\mathrm{P}(\mathrm{Aff}=\mathrm{D} \text { and } \mathrm{V} 1=\mathrm{Y} \text { and } \mathrm{V} 2=\mathrm{Y} \text { and } \ldots \mathrm{V} 16=\mathrm{N})
$$

$$
\approx \mathrm{P}(\mathrm{Aff}=\mathrm{D}) \mathrm{P}(\mathrm{~V} 1=\mathrm{Y} \mid \mathrm{Aff}=\mathrm{D}) \mathrm{P}(\mathrm{~V} 2=\mathrm{Y} \mid \mathrm{Aff}=\mathrm{D}) \ldots \mathrm{P}(\mathrm{~V} 16=\mathrm{N} \mid \mathrm{Aff}=\mathrm{D})
$$

Results

- We approximate probabilities from 425 politicians
- We predict affiliation of 10 other politicians
- For 3 , probability of republican ≈ 0 (truth:
- For 7 , probability of republican ≈ 1 (truth:

Results

- We approximate probabilities from 425 politicians
- We predict affiliation of 10 other politicians
- For 3 , probability of republican ≈ 0 (truth: all are democrats)
- For 7 , probability of republican ≈ 1 (truth:

Results

- We approximate probabilities from 425 politicians
- We predict affiliation of 10 other politicians
- For 3 , probability of republican ≈ 0 (truth: all are democrats)
- For 7 , probability of republican ≈ 1 (truth: one is a democrat!)

Error

	V 1	V 2	V 3	V 4	V 5	V 6	V 7	V 8
R	0.19	0.50	0.14	0.99	0.95	0.90	0.24	0.15
D	0.61	0.50	0.89	0.05	0.22	0.47	0.78	0.83
E	Y	Y	-	Y	Y	Y	N	N
		V 9	V 10	V 11	V 12	V 13	V 14	V 15
V 16								
R	0.11	0.55	0.14	0.87	0.86	0.98	0.09	0.66
D	0.76	0.47	0.51	0.15	0.29	0.35	0.64	0.94
E	Y	N	Y	-	Y	Y	N	N

