## Intro. to Math. Modeling ANSWERS TO REVIEW PROBLEMS (Typos corrected)May 2, 2005

1. (a) The birth rate is $250 / 1000=.25$ and the death rate is $220 / 1000=.22$. Thus $R=R_{0}=.25-.22=$ .03 . Thus $N(t+\Delta t)=\left(1+R_{0}\right) N(t)=1.03 N(t)$.
(b) After 10 years, starting from 5000 , the populations will be $(1.03)^{10} 5000=6720$.
(c) $N(t+\Delta t)=1.03 N(t)+.5$, since $N$ is measured in 1000 's.
(d) Recall $N_{k+1}=r N_{k}+m$, may be solved by assuming $N_{k}=A r^{k}+B$, from which we have $B=$ $m /(1-r)$ and $A=N_{0}-m /(1-r)$. In the present problem $r=1.03, m=.5$, and $N_{0}=5$. Thus $N_{k}=(5+.5 / .03)(1.03)^{k}-.5 / .03$. With $k=10$ we obtain 12452 individuals.
2. (a) In $T$ years where $2=e^{.03 T}$, or $T=23.1$ years.
(b) $\frac{d N}{d t}=.03 N+.5 t, N(0)=5$. Inserting $N=A e^{.03 t}+B t+C$, we see that $B=.03(B t+C)+.5 t$. Thus $.03 B+.5=0$ and $B=.03 C$ so $B=-16.666$ and $C=-555.555$. Then to make $N(0)=5$ we must have $A=560.555$. After 10 years the population is therefore $560.555 e^{3}-166.66-555.555=34.45$ or 34500 individuals approximately.
3. (a) $\frac{d N}{1+N}=t d t$, and this integrates to give $\ln (1+N)=t^{2} / 2+$ constant or $N=C e^{t^{2} / 2}-1$ From the initial condition $C-1=1$ or $C=2$.
(b)The integrating factor is $e^{\int t d t}=e^{t^{2} / 2}$ and so $\frac{d}{d t} e^{t^{2} / 2} x=t e^{t^{2} / 2}$. This integrates to $x=1+C e^{-t^{2} / 2}$, and the initial condition implies $C=1$.
(c) The equation integrates once to give $\frac{d x}{d t}+x=C$. From the two initial conditions $C=3$. Clearly $x=3$ is a particular solution of the resulting equation. Thus $x=3+A e^{-t}$. The condition $\frac{d x}{d t}(0)=2$ implies $A=-2$.
4. (a) $r$ is a fraction of space, It has no units. The units of $F$ are feet $/ \sec \times$ feet $^{2}=f e e t^{3} /$ sec.
(b)If $A$ is one square foot and the level is observed to rise $1 / 12$ foot in one hour $=3600$ seconds, then $F$ must be $\frac{1}{12 \times 3600}$ cubic feet per second. Then $r=\frac{F}{U A}=(12 \times 3600 \times 15 \times 1)^{-1}=.1543 \times 10^{-5}$.
(c) The rainfall is steady so you will be running through space with water occupying a fraction $r$ of the space. The velocity of 5 feet per second and the frontal area of 10 sq ft means that the flux onto your front will be $10 \times 5 \times r=50 r=7.715 \times 10^{-5}$ cubic feet per second. There are $12^{3}=1728$ cubic inches in a cubic foot, and 60 seconds per minute. Multiplying by these two numbers converts cubic feet per second to cubic inches per minute. Thus you will pick up about 8 cubic inches of water per minute.
5. (a) The possible equilibria are 0,1000 , and 3000 individuals. The equilibrium at $N=-2$ is not feasible since population size cannot be negative.
(b) If the equation is $\frac{d N}{d t}=F(N)$, and equilibrium $N_{e}$ is stable if $d F / d N\left(N_{e}<0\right.$, and is otherwise unstable. We compute $d F / d N(0)=-6, d F / d N(1)=6, d F / d N(3)=-30$. Thus 1 is unstable and the other two are stable.
6. (a) The equilibrium populations are 0 and $(1-1 / r)^{1 / 3} \times 1000$ individuals.
(b) For a recursion of the form $N_{k+1}=F\left(N_{k}\right)$, an equilibrium is stable if $\left|d F / d N\left(N_{e}\right)\right|<1$. Otherwise it is unstable. In the present case $d F / d N(0)=r>1$ so 0 is always unstable. Also $d F / d N\left((1-1 / r)^{1 / 3}\right)=$ $r\left(1-4 N_{e}^{3}\right)=4-3 r$. This equilibrium is thus stable for $1<r<5 / 3$, and is unstable for $r>5 / 3$.
7. (a) In the notation of the text, $b_{0}=1, b_{1}=1 / 3, d_{0}=1 / 4$, so the matrix is $A\left(\begin{array}{cc}1 & 1 / 3 \\ 3 / 4 & 0\end{array}\right)$.
(b) $\operatorname{det}(A-\lambda I)=-\lambda(1-\lambda)-1 / 4$, so the eigenvalues are $\lambda=\frac{1}{2}(1 \pm \sqrt{2})$ The population will grow by the factor $(1+\sqrt{2}) / 2=1.207$. The corresponding eigenvector satisfies

$$
\left(\begin{array}{cc}
\frac{1-\sqrt{2}}{2} & 1 / 3 \\
3 / 4 & -\frac{1+\sqrt{2}}{3}
\end{array}\right) \cdot \mathbf{N}=0
$$

Thus $N_{2} / N_{1}=\frac{3}{2}(\sqrt{2}-1)=.62$ gives the ultimate distribution between days 1 and 2 .
8. (a) $N_{1}$ growth reduces its own growth rate in a logistic fashion, and also the growth rate of $N_{2} . N_{2}$ enhances the growth of $N_{1}$ but makes a logistic reduction of its own growth. It would be fair to charaterize $N_{2}$ as prey for $N_{1}$, since $N_{1}$ is bad for $N_{2}$ but $N_{2}$ is good for $N_{1}$.
(b) (In the statement of the problem $x=N_{1}, y=N_{2}$. On the line $N_{1}=0$ we have $\frac{d N_{1}}{d t}=0$. Similarly on $N_{2}=0$ we have $\frac{d N_{2}}{d t}=0$, so the integral curves cannot penetrate either of these sides. On $N_{1}=3,0 \leq N_{2} \leq 2$, we see that $\frac{d N_{1}}{d t} \leq 0$. Also on $N_{2}=2,0 \leq N_{1} \leq 3$ we see that $\frac{d N_{2}}{d t} \leq 0$. Therefore the solution curves cannot be leaving $R$ on these sides. Thus any solution curve starting from a point in $R$ must stay in $R$.
(c) The non-zero equilibrium is $(3 / 2,1 / 2)$. Perturbations around this equilibrium satisfy $\frac{d \delta \mathbf{N}}{d t}=A \cdot \delta \mathbf{N}$ where $A=\frac{\partial F_{i}}{\partial N_{j}}\left(\mathbf{N}_{e}\right)$. This works out to

$$
A=\left(\begin{array}{cc}
-3 / 2 & 3 / 2 \\
-1 / 2 & -1 / 2
\end{array}\right)
$$

We compute $\operatorname{Det}(A-\lambda I)=\lambda^{2}+2 \lambda+3 / 2=0$. The roots are $\lambda=-1 \pm i / \sqrt{2}$. This equilibrium is stable and the imaginary part of the roots indicates that near the equilibrium the solution curves are spiralling into (3/2, 1/2).
(d) We expect to find that every integral curve goes to $(3 / 2,1 / 2)$, indicating this is a globally stable equilibrium of the two species.
9. (a) If $0<x_{k}, y_{k}<1$ we see that $x_{k+1}<1 / 3$ and then $y_{k+1}<1$. So the minimums in the bb-equation yield the stated equation.
(b) $y_{k+2}=x_{k+1}+\frac{2}{3}\left(1-y_{k+1}\right)=\frac{1}{3}\left(1-y_{k}\right)+\frac{2}{3}\left(1-y_{k+1}\right)$, or $y_{k+2}+\frac{2}{3} y_{k+1}+\frac{1}{3} y_{k}=1$. The equilibrium is a constant solution of this equation, which is $y_{e}=2$. To find solutions of $y_{k+2}+\frac{2}{3} y_{k+1}+\frac{1}{3} y_{k}=0$, set $y_{k}=r^{k}$. The $r$ must satisfy $r^{2}+\frac{2}{3} r+\frac{1}{3}=0$ or $r=r_{1,2}=-\frac{1}{3} \pm i \frac{\sqrt{2}}{3}$. For either $r$ we see that $|r|=1 / \sqrt{3}<1$ and so the general solution representing the system, of the form $y_{k}=y_{e}+A_{1} r_{1}^{k}+A_{2} r_{2}^{k}$, converges to $y_{e}$ for large $k$. The coresponding equilibrium value of $x$ is $x_{e}=1 / 6$, since $x_{e}=\frac{1}{3}\left(1-y_{e}\right)$.
10. From $d x / d t=x^{2} /(1+t)$, solution by separation of variables gives $1 / x+\ln (1+t)=\phi=$ constant. The solution is of the form $f=F(\phi)$. We want $f(x, 0)=x$, but when $t=0, \phi=1 / x$. Therefore $F(\phi)=1 / \phi$ and $f=\frac{x}{1+x \ln (1+t)}$.
11. Here $v(\rho)=60(1-\rho / 150)$. Thus in $x<0$, where initially $\rho=200, v(\rho)=60(1-4 / 3)=-20 \mathrm{mph}$. The charateristics emerging from point $x_{0}$ in $x<0$ therefore have the equation $x=-20 t+x_{0}$. Similarly in $x>0$, where $\rho=50$, we have $v(\rho)=60(1-1 / 3)=40 \mathrm{mph}$ and so the equation of the characteristics is $x=40 t+x_{0}$.
(b)We want to solve $\frac{\partial \rho}{\partial t}+60\left(1-\frac{\rho}{150}\right) \frac{\partial \rho}{\partial x}=0$. With $\rho=R(x / t)$ we have $-R^{\prime}\left[-x / t^{2}+60(1-R / 150) / t\right]=0$ giving $\rho=R=\frac{5}{2}(60-x / t)$. This gives $(200,50)$ when $x / t=(-20,40)$, as required.
12. The substituion gives $m \lambda^{2}+\mu \lambda+k=0$, so $\lambda=\frac{-\mu \pm \sqrt{\mu^{2}-4 m k}}{2 m}$. Since $m k>0$ we see that when $\mu^{2}-4 m k>0$ we have two negative real roots $\lambda_{1}, \lambda_{2}$. The general solution is then $x=A_{1} e^{\lambda_{1} t}+A_{2} e^{\lambda_{2} t}$ and both terms decay to zero as simple exponentials.

When $\mu^{2}<4 m k$ the roots are $\frac{-\mu}{2 m} \pm i \omega$ where $\omega=\frac{1}{2 m} \sqrt{4 k m-\mu^{2}}$. The general solution is now $A_{1} e^{-\mu / 2 m} \cos \omega t+A_{2} e^{-\mu / 2 m} \sin \omega t$, which corresponds to a decaying oscillation.

