The bursting balloon reconsidered

Kirchoff's solution of the IVP for the 3D wave equation is

$$
u(\mathbf{x}, t)=\frac{1}{4 \pi c^{2} t} \iint_{S(\mathbf{x}, t)} u_{t}(\mathbf{x}, t) d S^{\prime}+\frac{\partial}{\partial t}\left[\frac{1}{4 \pi c^{2} t} \iint u\left(\mathbf{x}^{\prime}, 0\right) d S^{\prime}\right]
$$

Here S is the spherical survace with center at \mathbf{x} and radius $c t$ and $d S^{\prime}$ indicates that the point \mathbf{x}^{\prime} is integrated over the surface S.

We now reconsider the bursting balloon and recover the solution using the Kirchoff formula. Here u is the pressure p. The firgure below indicates the geometry. The law of cosines implies

$$
r_{b}^{2}=R^{2}+(c t)^{2}-2 R c t \cos \alpha .
$$

The surface of intersection of S with the balloon has area $2 \pi\left(1-\cos \alpha(c t)^{2}\right.$. This is easily established in spherical coordinates. (This is a calculus exercise worth doing if you don't recall this.) Now the only term we need to consider in the Kirchoff formula is the second one. Since

$$
1-\cos \alpha=\frac{r_{b}^{2}-(R-c t)^{2}}{2 R c t}
$$

we obtain

$$
\begin{gathered}
u=p=\frac{\partial}{\partial t}\left[\frac{1}{4 \pi c^{2} t} p_{b}\left(2 \pi c^{2} t^{2}\right) \frac{r_{b}^{2}-(R-c t)^{2}}{2 R c t}\right] \\
p=\frac{\partial}{\partial t} \frac{1}{4 c} \frac{p_{b}}{R}\left(r_{b}^{2}-(R-c t)^{2}\right) \\
=\frac{1}{2} \frac{R-c t}{R} p_{b}
\end{gathered}
$$

Here $R+r_{b}>c t>R-r_{b}$. For any other value of R the area of intersection with the balloon is zero and so $p=0$.This is the result we obtained previously by reducing the balloon problem to an IBVP for the one-dimensional wave equation in spherical coordinates.

