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Introduction

1.1 General considerations

In this monograph we shall deal with the movement of things through fluids,
and with the fluid domain as a medium of transport and locomotion. These
topics comprise a vast but basic branch of fluid mechanics. They include
swimming and flying in fluids, fluid pumping, turbulent transport, and
mixing. Our aim is to provide a unified treatment of a subset of problems
of this type, and our first task is to indicate a little more precisely the focus
of our study. The material will deal largely with mathematical theory and
models, but will also treat various applications to practical problems. We
also view the topics as a kind of self-contained course in the fundamental,
if somewhat advanced fluid mechanics needed to cope with devices which
move or move in a fluid.

The first observation we can make is that transport or locomotion in
a fluid medium is quite different from walking, driving a car, or hauling
a freight train, all of which enables both transport and locomotion in our
daily lives. The free swimmer, for example, advances through the water
by “pushing” on it, thus causing the water to move as well, so that the
locomotion has to be viewed as an interaction of body and fluid, which
finally results in net displacements of both. The transport of material along
a conveyor belt or by a bucket brigade also seems fundamentally different
from what can be achieved in a fluid medium. How can this kind of direct
transport emerge in a continuously varying fluid? Indeed, is this kind of
direct control on transport even possible in a fluid? And what characterizes
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the fluid motions which can move suspended material in the absence of any
diffusional processes. Diffusion-independent transport is observed in fluid
turbulence, where the fluid motion is highly chaotic. Are there nevertheless
properties of the flow directly linked to transport?

If we ask how to distinguish between locomotion and transport, or in-
deed how these terms should be defined, we are lead rather directly to the
realization that to some extent they are two realizations of basically the
same physical processes. We will try to develop this idea, restricting the
discussion to two space dimensions, with the help of Figure 1.1. In 1.1(a) we
suggest a definition of “transport” as the bulk motion of a fluid contained
within a domain whose boundary moves, the boundary itself not undergo-
ing any net displacement. We might call this the “stirring motion” of the
boundary. In 1.1(b) this is made into a better representation of a pump
by allowing the domain to be multiply connected, the boundary motion
now causing a net flow through the annular region between the stationary
and moving wall. The stirring motion might be such that each point on the
moving boundary executes (for example), a closed periodic motion, without
any net displacement over one cycle.

(c)

Figure 1.1: In (a) the boundary movement causes net motion of the fluid.
(b) A variant of (a) in a multiply-connected domain. (¢) Locomotion of a
body in a bounded fluid domain.
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In Figure 1.1(c) we illustrate locomotion, the inner, moving boundary
being now free to move about. Again the points of the body can be thought
of a executing closed periodic orbits when the body is“held fixed”, but in
its free state there is presumably net displacement and we speak of the
body as flying or swimming. ! If we compare (a) and (c) we see that in
this example “transport” and “locomotion” differ in two ways. First, the
two configurations are essentially geometrical inversions, the fluid being
inside of the boundary on the one hand and outside of it on the other.
Secondly, and more important to the distinction, on the one hand the
moving boundary is “fixed”, and in the other it is “free”. By relaxing
this distinction we could then consider a single class of flows involving
points associated with “boundary” or “body” and points associated with
“fluid”. By conditioning the former to be fixed or free, both transport and
locomotion can be modeling in a single framework, by focusing on the bulk
motion of one or the other set of points.

This description suggests that these problems should be approached as
continuum mechanics of an inhomogeneous medium consisting of both fluid
and solid components, a viewpoint that has in fact proved to be valuable
in both theoretical modeling and numerical simulation. A natural swimmer
such as a fish might be modeled in a way that accounts for the body’s mass,
muscle structure, flexibility, and shape. Supplied with a source of energy
sufficient to maintain its movement, the swimming must be understood
as a result of the dynamical interaction of fluid and body. This unified,
but somewhat extreme view of our class of problems can be accepted if
it is understood that in many situations the “non-fluid” material can be
adequately dealt with in a simpler manner, for example by supplying a given
boundary motion whenever the reaction of the fluid is not to be considered.
In some cases the fluid motion itself can be supplied, for example when
studying transport of a passive scalar in a given velocity field.

The view of locomotion and transport as two aspects of the same problem
will permeate the organization of this monograph, even though we will treat
the topics in two distinct Parts. A further basic division will be made, on
the basis of the relative importance of the viscosity of the fluid, into the
Stokesian realm and the Fulerian realm. In the Stokesian realm viscous
forces dominate inertial forces, the boundary and fluid are intimately linked
by the rapid diffusion of momentum, and similar mechanisms apply whether
the boundary locomotes or drives a flow. In the Eulerian realm viscous
stresses are nominally negligible, but in fact the role of viscosity is extremely
subtle. This is particularly true in the case of locomotion, where effective
mechanisms involve the creation of vorticity in the fluid, fundamentally a
viscous process in the problems we study here.

"We shall return below to the distinction between flying and swimming. In
brief, the weight of the object is of no consequence in swimming, the density of
the water allowing for buoyant lift.
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1.2 Kinematics

With the present section we begin our introduction to some basic methods
of fluid dynamics. We shall make an assumption which will apply globally
to this work. In any expression involving functions and their derivatives,
the necessary smoothness is assumed. However, for any calculation where
regularity issues are important in the physicial problem under study, the
necessary assumptions on functions wiull be made explicit.

1.2.1 Lagrangian coordinates

Some considerations of importance to us will not depend upon the dynam-
ical processes responsible for the motion of fluid or body. In this case we
simply study the motion of a point associated with body or fluid, without
regard to the causes of the motion. The kinematics of motion of a given
point may be expressed as a vector function x of time ¢ and a variable a
which serves to identify the chosen point. In all of our work x will lie in two
or three space dimensions (variously (z,y, z) or 1, 2, x3), and a will have
the same number of dimensions as the object under study. Often the label
a is taken as the initial position of the point relative to some standard ref-
erence frame, and we refer to this case as standard Lagrangian coordinates.
We use RY to denote Euclidean space in N dimensions.

We shall always assume that x is a continuous function of a,t. If it is
also a differentiable function of time, then we may define the velocity of the

point at time ¢ as

_ox| _dx

We refere to u(a, t) as the Lagrangian velocity field.

If the chosen point is one which is transported relative to the reference
frame, or else locomotes through the fluid relative to that frame, then the
values of x as time increases will lie in some non-trivial point set, and
also u will have non-zero values. In the case of locomotion it will often be
convenient to define the reference frame as“attached to the body”, i.e. it
is a body frame, so that body points execute limited excursions relative
to the frame. In this case the locomotion of the body will be determined
by the kinematics of the body frame itself, relative to a standard reference
frame, usually one that is fixed relative to distant fluid.

Such a function x(a,t) is said to be the Lagrangian coordinate of the
point determined by the given value of a. It is important that we will
consider open sets over which a is defined, for this allows us to speak of a
deformable body or a blob (parcel) of fluid , and hence of the locomotion
and transport of finite amounts of material. When dealing with Lagrangian
coordinates we let D denote the domain of values of the variable a. If a is
defined customarily as an initial value, then D is the initial configuration of
Lagrangian points whose motion is determined by x. We may then enlarge
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the discussion to include the evolution of the configuration with time. We
will often use the term material as equivalent to Langrangian in reference
to coordinates. Material point, surfaces, or fluid parcels are thus collections
of Lagrangian points, moving with the fluid.
Indeed we may under the above assumptions on x regard Lagrangian
coordinates as a map
M:D - RN, (1.2)

We shall assume that x is a differentiable function of a for ¢ > 0, so that
we may form the Jacobian tensor J:

83:1-
I(a,t) = (Jy) = (aai)' (1.3)
The Jacobian tensor, when multiplied on the left by the differential column
vector da, yields the image of da under the flow, allowing us to follow the
rotation and elongation of the separation vector connecting two nearby
points. Also the determinant |J| of the Jacobian determines the effect of
M on small volume elements. In particular for the important case of a

volume preserving map M, we have |J| = 1.

1.2.2  FEulerian fields

Although we have used the term already to indicate a realm of fluid dy-
namics where viscous stresses are nominally small, we use Eulerian here
to indicate an alternative formulation of continuum mechanics in terms of
fields which are given as functions of x,¢ defined on RY x R. We then
may refer to x as Fulerian coordinates. We again use D to denote the
domain, now for the Eulerian coordinate x. In such a scheme the track-
ing of the position of individual points of D, the basis of the Lagrangian
picture, is replaced by a “snapshot” of the fields— velocity, temperature,
etc.— at each instant of time over the entire domain D. We shall always
assume these fields are sufficiently smooth to allow the operations of inte-
gration, and more importantly, of differentiation, that we carry out below.
The Eulerian velocity field u.(x, t) is thus related to the set of Lagrangian
coordinates x(a, t) by the following equation:

ox

5|, = uelx(a,0),0) = u(a, ). (1.4)

If u.(x,t) is known, (1.4) is a system of N ordinary differential equations,
whose solution space defines the totality of Lagrangian coordinates for the
given flow.

In general differentiation of an Eulerian field Q(x,t) with a held fixed

yields
Q| 9Q 0Q _dQ
T ot 01, =Qilx+u.-VQ = T (1.5)

83:1-
x Ot
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We thus speak of d@/dt as the derivative following a Lagrangian point,
of the material derivative with respect to time. For example, the Eulerian
form of the fluid acceleration is defined by

du

—=w +u-Vu 1.6

a7 t+ (1.6)

If we differentiate (1.4) with respect to a, there results, using the chain

rule in component form,

dt a_ 8CCk kg

(1.7)

Using (1.5) we obtain the Eulerian equation for the Jacobian tensor as a
function of x, ¢:

Here and often below we shall omit the subscript e when x is understood
to be the independent variable. The corresponding equation for the deter-
minant |J| is (see Exercise 1.1)

13| +u- VI = (V- w)d]. (1.9)

It follows that a volume-preserving Lagrangian map M determines an
Eulerian velocity field satisfying V - u = 0. We say that such a flow is
incompressible. Since air at speeds well below that of sound, as well as
water, are essentially incompressible fluids, our discussion will be restricted
for the most part to divergence-free velocity fields u.

1.3 Conservation laws

To study conserved quantities in fluid flows, we need to consider proper-
ties associated with fluid parcels, which by definition are associated with
Lagrangian points, moving with the fluid. Let Dy, be such a fluid parcel,
bounded by an orientable material surface D;, and moving freely in RV
with the Eulerian velocity field u, and let @ be a property of the fluid
defined at each point of D;. We then consider the time derivative of the
integral of @) over D;:

%/Dt Q(x, t)dV (x). (1.10)

We here write dV (x) to indicate the independent variables of the volume
integration. Since dV(x) = |J|dV(a), it is useful to employ Lagrangian
coordinates and write so as to obtain

d d

a I, Qx, 1)V (x) = — - Q(x,1)[J|dV(a)



1.3 Conservation laws 7

:/ [dQ/dt|J|+Q%]dV(a). (1.11)
Do t

Note that the material derivative of @Q appears here inside the integral,
since () is a being regarded as a function of a,t following the change of
variable to a. Using (1.9) we then have

d

il QdV(x) = /D t[dQ/dt(x,t)+QV~u]dV(x). (1.12)

If @ in D is conserved, the

d —

This then implies, assuming that the integrand is a continuous function of
x, that
oQ
dQ/dt(x,t)+QV~u:§+V~(UQ):O. (1.14)
Here we have combined terms using u-VQ + QV -u = V- (Qu). The form
(1.14) is referred to as the local form of conservation of Q). Note that, if the
divergence theorem wass used we could have written

d B 0Q
p -, QAV (x) = /Dt E(X,t)dV(x) + o, Qu,dS(x), (1.15)

where u, is the outward normal component of u evaluated on 9D;. We
see that (1.15) expresses conservation of @) as a balance between the time
variation of @ over D, and the flux of @ through the boundary 0D;.

The above Lagrangian derivation of (1.14) should be contrasted with the
corresponding Eulerian argument. Here we consider a fized but arbitary
domain D and and explicitly balance the time derivative with a flux term:

d = 8—Q X X) = — U X
G et = [ Fanave = [ Quisx.  (110)

The local expression is then a result of the divergence theorem and the
arbitrariness of D.

1.3.1 Conservation of mass

The most basic material property of a fluid is its density p(x,t), equal
locally to mass per unit volume, here expressed as an Eulerian field. Con-
servation of mass requires that

d
T o, pdV(x) =0, (1.17)
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or, using (1.12),

d 19)
L pavix) = [ Lx,t)+ V- (pu)(x, t)dV (x) = 0. (1.18)
dt Jp, D, Ot
Assuming that the integrand on the right is continuous, this equation ap-
plied to arbitrary parcels of fluid implies that

dp

ot
throughout the domain of fluid. This so-called equation of continuity ex-
presses mass conservation as a local constraint on Eulerian variables. The
corresponding Lagrangian form of conservation of mass simply states that
the total mass contained in a given fluid parcel is a constant. Combining
(1.9) nd (1.19) there immediately follows the local equation

d(plJ|)

— =0 (1.20)

+V-(pu)=0 (1.19)

see Exercise 1.2. For standard Lagrangian coordinates J(a,0) = I, the
identity, and we may then express conservation of mass in the form

pla,t)|3](a, 1) = p(a, 0). (1.21)

if the fluid is incompressible, conservation of mass reduces to the Eulerian
statement that density is constant following a fluid particle:

dp

— =0 1.22
", (1.22)
as is clear from (1.19). Density can of course change from particle to par-
ticle. A constant density fluid is thus also incompressible, but the converse

is not true in general.

1.3.2  Conservation of momentum

In the context of locomotion one must consider both the momentum of
the body in locomotion, and of the fluid medium, in order to understand
conservation of momentum. For example, consider a body which begins to
swim in the absence of gravity, starting from a state of from rest. Since
no outside body forces are present, every force exerted by the body on the
fluid is accompanied by and equal and opposite force exerted by the fluid
on the body. Now Newton’s second law states that the rate of change of
linear momentum of a mass system with respect to time must equal to the
force experienced by the system. Thus if My and M, are the total linear
momenta of fluid and body respectively, we must have
d

- (M + M) = 0. (1.23)
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Since the total momentum is constant, and the system starts from rest,
M, +M; = 0 for all time. If the fluid fills all space, and the spatial average
of velocity over all points of the body is U(t), the momentum in the fluid
at that instant is —pUV where V is the body volume. Note that, if at a
given moment the body is accelerating, then there is a balancing change
of momentum of the fluid. The body experiences a force, which accelerates
it, and the fluid experiences and equal and opposite reaction. If the body
stops accelerating, a state that usually involves a constant time average of
the body velocity, the average force on the body while swimming in the
steady state is zero! This confronts us with the fact that the purpose of
locomotion is to displace a body, not to produce a force.

As a second example, consider a heavy, body of weight Win an infinite
expanse of fluid. By Archimedes principle, the relative weight of the body
is W reduced by the buoyancy force gpV', where Visthebodyvolume.

Wiyet =W — gpV. (1.24)

First suppose that the body deforms in such a way that it can hover at
a fixed point. However the hovering may be achieved, the net effect is to
apply a force which on average equals the relative body weight W,.;. This
must in turn equal to the time rate of change of the momentum directed
along the gravitational field. In other words, the body must act as a source
of downward momentum where W,¢; = dMy/dt. If the body is rigid and
simply sinks, the downward body momentum M, will increase along with
the downward fluid momentum but we will have W,..; = d(My + M,)/dt.

Within the fluid, Newton’s second law states that the time rate of change
of momentum pu must equal the force per unit volume F which acts on
the fluid. In Eulerian terms,

p[%—ltl+u~Vu] =F. (1.25)

The corresponding Lagrangian statement is, in the standard variable, just

o(a, t)a—x(a, t) = p(a,0)J 1. ?37;( =F(a,t). (1.26)

Note that %2—t’2‘(a, t) is the fluid acceleration in Lagrangian coordinates.
These local forms of the conservation of momentum are referred to sim-
ply as momentum equations.

The global Eulerian derivation of conservation of momentum again uti-
lizes a fixed domain D and a flux of momentum through its boundary 9D.
Thus we have

D puavie) = [ 2%y = — / pu,dS(x) + / FdV (x).
dt Jp p Ot oD D
(1.27)
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The force F can be divided into a part f most conveniently described as a
body force, and a part which is most conveniently expressed as a surface
stress acting on 0D,

oD oD oD

The stress tensor o will be discussed below in the context of the Navier-
Stokes equations. The local form of the momentum equation including it
may them be writen

8pul + 8puluj _ 80'“

Not that, if the partial differentiations are carried using the product rule
and (1.19) used in the component form

Op  Opu;
8t + 83:j

=0, (1.30)

then we see that (1.29) is consistent with (1.25),

- U
P at P J

(173 80'“

833j B 83;j

= fi. (1.31)

We have till now made no assumptions regarding the fluid except that
it has a density field p(x,t) and a velocity field u(x,t). The simplest as-
sumption that is made concerning the stress tensor o is that it be a saclar
function multiplied into a unit tensor:

1, i=j

Here p is the pressure field. . The pressure is an isotropic stress field,
in the following sense. At any point x in the fluid where measurements
are made, the force on a small surface element ndS, due to a pressure on
the side out of which its normal n points, is exactly —p(x, t)ndS. That is,
the pressure acts in a manner independent of the orientation of the surface.
This isotropicity is a direct consequence of Newton’s laws. If one considers a
small, arbitrary parcel of fluid, and then lets the boundary contract through
self-similar shapes, the volume and hence the mass decreases as the length
cubed, while the surface area and hence the nominal force which pressure
can exert on the parcel decreases as length squared. To prevent divergent
acceleration of the parcel, the net pressure force must vanish as the parcel
become small. Since the shape is arbitrary the pressure tends to be the
same at every point of the surface as its size becomes small.

The very existence of a pressure is an empirical fact. Our fluid continuum
has the property that it resists being “squeezed”. In general, fluids have



1.4 Vorticity and circulation 11

the property that as a parcel is squeezed the pressure and density increase.
In the case of an incompressible fluid, density is constant and the pressure
can be thought of as a resistance to compression which is manifest without
perceptible changes of density.

The fluid defined by the choice (1.32) is called an inviscid, perfect or ideal
fluid. The resulting local momentum equation

ou

p§+pu~Vu+Vp:f (1.33)

defines Fuler’s equations of an ideal fluid. With the conservation of mass or
continuity equation, we have four equations for the five variables p, p,u. A
final equation is needed to complete the system. In most of our work here,
the final equation will be the stipulation that density is constant. More
generally, we might allow p to be an arbitrary function of p. In that case
we define an ideal, barotropic fluid.

1.4 Vorticity and circulation

Locomotion in fluids is usually accompanied by the creation of “eddies”,
swirling motions of the fluid which are left behind as the body progresses.
We show in Figure 1.2 the flow field of a simple flapping wing, as calculated
in two-dimensions for a viscous fluid. Eddies are shed from both front and
rear edges as the wing moves downward.

-6.3-46-34-28-1.1 20 2.6 3.0 39 52 A
2949 ® ® ®
B
. C

«©

Figure 1.2: Images of the flow field created a thin wing of thin elliptic
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cross-section executing sinusoidal flapping motion. Three sequential stages
of the downward motion are shown. (Numerical calculation by Jane Wang.)

An important local measure of the intensity of the eddying motion is
contained in the wvorticity field

w=Vxu (1.34)

This is here expressed as an Eulerian field, the curl of the velocity field.

The vorticity is thus a linear function of the first partial derivatives of the

velocity. In general the tensor of first derivatives, D;; = %, can be written
J

as a sum of parts symmetric and antisymmetric in the indices:

1, 0u; Ou; 1,0u; Ou;
Dl ‘ J — L J EEl Ql 1.35
7 (83:J oz; + 2 (83;j 83:1-) i+t ( )
Here
1 0 w3 —Wwo
Q= —w3 0 “+wq (136)

omegas —wi 0

Contains the components of the local vorticity. We mention that in two di-
mensions, that is when u = (u(z, y), v(z, y)) the only surviving component
of vorticity is ws and we write wg = w = 8” 8—“

Physically, the importance of the vorticity is suggested by the fact that
for a rigid body rotation, u = w x x where w is a constant vector, we
compute w = 2w. Now w is just the angular velocity of the rotation (in
radians/sec), and so vorticity is precisely twice the local angular velocity
of the fluid. Since conservation of angular momentum is important in the
dynamics of a fluid, it is then natural to attach a dynamical meaning to
vorticity.

This however is not strictly possible, since a massive body refers to a
parcel of fluid, while vorticity is a point property. If we compute the an-
gular momentum of a parcel P of fluid of density p, relative to a point xg
contained in P, we obtain

Ap = /Pp(x —x0) X udV(x). (1.37)

Let P contain the point x¢ and expand about xq:
Ap =~ / p(x —x0) x (ug+ Dy - (x —x0))dV (x). (1.38)
P

Now it is possible to choose P (as an ellipsoid say) and xg so that the term
in ug vanishes, but it is easy to see that in general the remaining term
will yield a mixture of contributions from the tensors E and 2, and hence
vorticity alone is insufficient as a measure of angular velocity.
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It thus turns out that dynamically a more extensive or global measure
of “eddying” motion is needed, and this can be obtained by integration of
the normal component of the vorticity field over an oriented surface S with
boundary 0S. By Stokes’ theorem

/n~wdS: u-dx =Tygs. (1.39)
s a8

The quantity I'ss is the circulation of the velocity field u on the closed
material curve 0S. The value of circulation as a global measure of angular
movement is embodied in a fundamental theorem due to Lord Kelvin.

1.4.1  Kelvin’s theorem

Consider a fluid with equation of motion (1.25), and suppose that C; is a
simple, closed material curve in the flow. Suppose also that

/ F-dx=0. (1.40)
Ct

Then the circulation I'c, of u on C} is a constant. To prove this let the
curve Cy be a Lagrangian map of a set Cy of Lagrangian coordinates a.
Then J J
— u-dx = — u-J-da, (1.41)
dt Ct dt CO
where we bring in the Jacobian J. Thus, since Cj is independent of time,

d
4 u.dxz/ (2
dt /o, c, \ Ot

:/ F~dx+/ u~du:/ F - dx, (1.42)
Ct Cy Ct

using (1.25), which establishes the result.

Kelvin’s theorem is important in fluid mechanics because of the many
applications where forces are conservative in the sense that (1.40) holds on
all simple closed curves. For example, for an ideal fluid of constant density
in a constant gravitational field g we have F = del(g - x — p~'p), and also
for an ideal barotropic fluid.

Circulation can be interpreted physically as a measure of “eddying”, and
so Kelvin’s theorem establishes conditions under which eddies are persistent
in the flow.

Ju
a~J+u~%)~da

1.4.2 Potential flows

Under what conditions is a flow field eddy—free, in the sense of having zero
circulation on all closed contours? A well-known theorem of calculus states
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that under appropriate smoothness conditions the velocity field must then
have the form
u=Vo (1.43)

for some scalar field ¢(x, t), called the potential of the flow. Since Vx V¢ =
0 we see that potential flows have no vorticity, that is to say they are
irrotational.

For a fluid of constant density, conservation of mass (see (1.19)) implies
that V- u = 0, so if u is a potential flow the potential must then be
harmonic,

V¢ =0. (1.44)

The theory of harmonic functions tells us that the only harmonic func-
tion bounded in RY is a constant. The same result holds in the presence
of stationary boundaries which the potential flow does not penetrate, i.e.
where the normal derivative of ¢ vanishes. This suggests that all realistic
(e.g. bounded) flows might be expected to be rotational somewhere, and
conversely that flows exist because of the vorticity present somewhere. But
these statements, while suggestive, are not true in general. A bounded po-
tential velocity in infinite space is possible, an example being the uniform
flow with ¢ = x. Also nontrivial potential flows exist in two dimensions in
multiply connected bounded domains, and example being ¢ = 6 in polar
coordinates (r,§) in the annulus 0 < r; < r < ro. We say that a domain
D is simply connected provided any two continuous curves connecting two
points of D can be deformed continuously one into the other without mov-
ing the two points and without leaving D. It then follows (see Exercise 1.8)
that there exist no non-zero potential flows in a bounded simply-connected
domain. Thus, in such a domain a nonzero flow must be rotational some-
where. In this case we indeed see that the vorticity field is a kind of vortical
“skeleton” which supports the flow, and which can in some cases occupy a
rather small fraction of the domain.

An extreme example of this is the point vortez in two dimensions, defined
away from the origin by the potential ¢ = 6, or

(u,v) = %TﬁQ(—y,x). (1.45)

A direct calculation of circulation, which may be taken counterclockwise
on the circle r = 1, gives a value of unity. Since the flow is potential
except at the origin, this is the value of circulation on any simple closed
curve winding counterclockwise once around the origin. We conclude by
appealing to Stokes’ theorem that the vorticity w = % — g—“ is concentrated
at the origin and has total strength unity. That is, in the language of
distributions, w = &(x)d(y). This distribution is then the “skeleton” of
the point vortex flow. It is instructive to test ones intuition concerning
the meaning of irrotationality on this example. We show in Figure 1.3 the

evolution under the flow of a small material parcel. Note that necessarily the
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parcel is “turning over” as it deforms, which seems to stand in contradiction
with the dictum of “zero angular momentum”. But we are then trying to
compare a point property with a global property. The circulation around
the boundary of the parcel remains identically zero. On the other hand,
the boundary deforms in response to the symmetric part of the velocity
derivative tensor E, see (1.35), and so cannot be related exclusively to the
vanishing of vorticity within the parcel (cf. Exercise 1.5).

1 N
o =
: %\ g
Dj S~ //

Figure 1.3: Evolution of a small material parcel (here represented by the
four corners of a parallelogram) in the point vortex potential flow with

b =0.

Potential flows in two dimensions are expecially accessible because of
their relation to analytic functions of a complex variable z = x + 4y. If
f(z) = ¢(z,y)+iv(x,y) is defined and analytic on a simply-connected, then
¢ is a harmonic function which is a potential of a velocity field (u,v). More-
over df /dz = f'(z) = u(x,y) — w(z,y). The function ¥(x,y) is the corre-
sponding stream function for the flow. This is the harmonic function conju-
gate to ¢, satisfying (u,v) = (y, —9z). The equality (¢, ¢y) = (Vy, —Uaz)
implies the Cauchy-Riemann equations for the function f.

We remark that for the point vortex the associated analytic function is
f(2) = —5=log z, so that 1) = — - log 7, the streamlines ()=constant being
concentric circles.

1.4.3 Velocity from vorticity

Because of the “skeletal” nature of vorticity, it is of interest to try to
recover the Eulerian velocity field u from the vorticity field. Since this
means recovering a field from its first derivativess, this is a smoothing
operation which can be expressed in integral form. We first note that if,
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given the vorticity field w as a function of x, we find a velocity field v such
that V x v = w then we may add to v any potential flow and obtain from
it the same vorticity. Thus the inversion in question is non-unique up to
an added gradient function. We seek to recover the original velocity field
u, and the conditions on this field must determine the potential flow.

We suppose D to be a domain in R, and that the domain and the
conditions satisfied by the velocity field u insure uniqueness. For example,
if D is simply-connected and bounded, u,, = 0 on 9D, and both the curl and
the divergence of u are prescribed function, the former being a divergence-
free vector field, then uniqueness is obtained.

One such formula for a v, applicable only to certain domain of simple
topology is given by the following elegant formula.?

1
v = / sw(sx, sy, sz) X xds (1.46)
0

Note that w must here be defined along rays extending out to the boundary
of D from the origin. In particular then the domain D must be deformable
to a point.

To prove (1.46) we use the vector identity

Vx(uxv)=uV:-v+v-Vu—-vV-u—u- Vv, (1.47)
to obtain

2

d
V X (sw(sz, sy, sz) X x) = 2sw(sx) + sx - Vw = —s w(sx), (1.48)

ds

so that integration with respect to s yields the desired result. Thus u and
v have the same curl.

It remains to find a gradient flow V¢ such that v + V¢ has the same
divergence as u. Let the latter be f(x). Taking the divergence of v we find
from (1.46)

1
v-v:/ sx - (V x w)ds = f — V3¢ (1.49)
0
The general solution of this equation is then

1
_47TD

dv(y)
x—yl
where ¢j, is an arbitrary function harmonic in D, assumed to be uniquely

determined by conditions on u. For recovery of an incompressible flow , we
simply set f = 0 in the formula.

6(x) ( / sy - (V x w(y))ds — f(y)) +on(x).  (1.50)

2This is a special case of the converse to the Poincaré Lemma of the theory
of exterior differential forms, see [3]
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Although (1.50) provides an explicit solution to the problem at hand,
it does not reflect the intuitive association of velocity and vorticity fields
which we get from Stokes’ theorem. That is, an element of vorticity is asso-
ciated with circulation according to a right-hand rule. In electromagnetics,
the analogous associatiion is between magnetic induction and current, as
expressed by the Biot-Savart law. . This provides a different formula for u,
which we now discuss in the special case that the domain is R3 and w and
f vanish sufficiently rapidly at infinity.

If we set u = V¢y + v where VZ¢; = f(x), then again we have the
particular solution

1 dVv(y)
_ y )
4m JRs x -yl

6(x) = (L51)

We assume the decay of f insures the existance of the this integral for all
x in R3.

We now seek an incompressible field v with vorticity w. We may then
introduce a vector potential A and set v =V x A. Assuming tentatively
that V- A =0, and using V x (V x ) = V(V:) — V? we have —V?A = w
and so

1 av
- ) (1.52)
47 R3 |X - y|
We then verify that
1 av 1 av
S R L oy RMR St SR
4 Jrs Ix —y| A Jrs Ix -yl

since w is divergence-free and vanishes at infinity. Thus our flow field has
the form u =V x A 4 V¢ + V¢, where ¢y, is a harmonic function. If u
vanishes at infinity then V¢, = 0. For the case V¢, = f = 0 the solution
has the Biot-Savart form

1

u=-—1 [ (x—y)xwy)x-y/dV(y) (1.54)
T JR3

The contributions to velocity from the integrand on the right of (1.54) can
be understood most easily if w is thought of as broken to small tubular
parcels Aw with vorticity locally aligned with the axis of the tube. These
little vortex tubes each contribute to velocity according to the right-hand-
rule: du = —R x AwR ™3 where R is the vector from the parcel to the point
of evaluation of velocity. This can be useful when discussing the relative
effects of isolated patches of vorticity. In general, however, the velocity field
asssociated with a continuous distribution of vorticity may be quite difficult
to sketch out from this rule.



1.5 The Navier-Stokes equations 18
1.5 The Navier-Stokes equations

1.5.1 The Newtonian stress tensor

In natural fluid dynamics the force F on the right of (1.25) will contain
external force fields such as gravity as well as forces associated with the
physical properties of the fluid. We discuss now the fluid properties which
will be considered in this monograph. We have introduced above the force
exerted by the fluid on a small fluid parcel bounded by an orientable surface,
using the surface stress tensor o;;. We isolate a surface element ndS of its
boundary, and define the force on the element in terms of {o;;} by

It is not difficult to show that a divergence of angular momentum on parcels
of arbitrarily small volume can be avoided only if ¢ is a symmetric ten-
sor. The argument is anaologous to that used to show that pressure is an
isotropic field. The form of 0;; to be adopted here involves the pressure
field p(x,t) but also now the first derivatives of the velocity field:

1
045 = _p5ij + Zﬂ(Eij — gv . 1151']'), (156)
where

= 2(8$J 83:1

(1.57)

is the symmetric part of the velocity derivative tensor.® Here y is the scalar
viscosity of the fluid. This form of the stress-tensor defines a Newtonian
viscous fluid. . With the adoption of (1.56) we determine the Navier-Stokes
momentum equation. . If density is taken as a constant, and if also the
viscosity is a constant, then since V - u = 0 the Navier-Stokes equations
take the form
ou 9

E+u-Vu+Vp—VVu:O, V.-u=0, (1.58)
where v = p/p is the kinematic viscosity of the fluid. . These form a set of
N + 1 equations for u,p. In the general compressible case, the equations
must be supplemented with an equation of state as well as an equation of
conservation of energy.

Once the Navier-Stokes equations are solved subject to suitable boundary
conditions (see the following subsection) the stress tensor may be evaluated

3The derivation of the form of (1.56) from general principles is given in many
textbooks on fluid dynamics, see e.g. [2],[7], [8],[6]. Suffice it to say here that this
expression is the simplest one which exhibits the necessary symmetry and does
not allow viscous forces to be realized in a rigid-body motion.
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to obtain forces. If n is the normal to a small surface element of area
dS adjacent to the fluid flow, then the force exerted by the fluid on the
element is dF; = o;;n;dS. Both pressure and viscous contributions will be
important in the problems of interest to us here.

1.5.2 Boundary conditions

Within the scope of Navier-Stokes theory, a fluid is regarded as viscous
continuum which cannot move relative to a rigid boundary. We thus apply
to any non-fluid boundary a no-slip condition . This condition states that at
any such boundary the velocity of the fluid is the same as the velocity of a
material point on the boundary. If x5 (&, t) denotes points on the boundary,
& being a vector of parameter determining, for example, the position of all
boundary points at time ¢ = 0, then no-slip condition states that

u(x(,),t) = Z—?(x,t}. (1.59)

This assumes that we have prescribed the function x(¢, ¢). In natural loco-
motion the boundary position will usually not be known in advance, since
both current standard shape and the current position of a body will depend
upon the fluid flow from initial to current times, see 77.

The non-slip condition is well-verified experimentally for the problems
of interest to us here. In sufficiently rarefied gas, on for sufficiently small
objects, the assumed continuity of the medium breaks down along with the
no-slip condition. In some cases a new effective condition on the continuum
is adequate for extending the range of the Navier-Stokes theory. This usu-
ally involves a slip at the boundary, that is a non-zero value of the velocity
component tangential to the boundary, which depends upon the applied
stress field there.

1.5.8 Galilean invariance

Let U be a constant vector. It is a simple matter to check that if u(x, t), p(x, t)
is a solution of the Navier-Stokes equations, then so is u*(x*, t*), p*(x*, t)
where

u*(x*, %) = u(x*, t*) + U, p*(x*, t) + p(x*, t*), (1.60)

and
x*(x,t) =x — Ut t"(x,t) = t. (1.61)

Indeed, since the stress tensor depends only upon velocity derivatives and
contains no time derivatives, it is unaffected by the addition of a constant
to velocity or the time dependence of x*. The material derivative of velocity
yields
du*  Ju*
dtx 0Ot

+u* - Viu*, (1.62)
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where V* = {8%} Now

ou*(x*,t)  Ou(x,t)
5 =] T U - Vu(x, t)]x=x+, (1.63)
and
ut - vViat = [u~VU+U'VU]x:x*. (164)

Adding the last two expressions we have invariance of the material deriva-
tive and hence therefore of the momentum equation. Invariance of the mass
equation follows by a similar argument, and in the case of compressible flow
the equations of state and the energy equation may also be shown to be
invariant.

Physically, Galilean invariance means that the Navier-Stokes equations
govern the velocity observed relative to any frame which moves with uni-
form velocity. This will be important to us since locomotion with con-
stant velocity is usually most conveniently described relative to a co-moving
frame, one that is fixed relative to the body.

1.5.4 The Reynolds number

The Navier-Stokes equations present us with a rather simple dynamical
balance in which pressure and viscous forces are balances by the inertial
forces associated with the acceleration of the fluid. This reduction of New-
ton’s laws to such a balance indicates the importance of a dimensionless
parameter measuring their ratio. The Reynolds number may be defined in
terms of a length scale L associated with the fluid motions, a characteristic
velocity U, and the a typical kinematic viscosity v = u/p where p is the
fluid viscosity. Since a characteristic time is the T'= L/U, a typical accel-
eration is U2 /L, leading to inertial forces pU?L. Since two derivatives are
involved, viscous forces are of size poU/L?. The ratio of inertial to viscous
forces is therefore measured by the Reynolds number

Re=UL/v. (1.65)

It is important to distinguish the two extremes of small and large Reynolds
number. Flows at small Reynolds number are also known as Stokes flows
or creeping flows. . In Stokes flow the inertia of the fluid is negligible, so
that the momentum equation reduces to

80' i
=F 1.66
G =F (1.66)
see (1.56), where on the right we place all other applied forces.
At high Reynolds numbers, on the other hand, viscous forces are nom-
inally negligible. The qualifier is important. Suffice it to state here that
any neglect of viscous stresses implicitly assumes that the derivatives are
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not so large as to prevent their neglect. That is, it is not obvious that one
has correctly identified the appropriate scales in estimating the stresses as
of order puU/L?. On a domain where the approximation of negligible vis-
cous stresses may be made, the momentum balance takes the inviscid or
Eulerian form noted earlier

p[%—ltl+u~Vu]—|—Vp:F. (1.67)

The question might be raised as to why there is no still simpler fluid than,
say, an incompressible fluid on constant density with momentum equation
(1.67). The only available simplification would appear to be that of zero
pressure. Although such a model is not without its uses (e.g. in cosmology),
if fails to capture an essential feature of everyday fluids, their resistance to
compression. An isotropic field in the minimal field to accomplish this, and
itg must be retained in any realistic description of most fluids.

In practice it is important to estimate the Reynolds number properly,
in order to determine if either of these approximate descriptions is rele-
vant. It is generally a matter of common sense how one should chose U, L.
Once dimensionless variables are defined (we do not here give these vari-
ables a special symbol) the Reynolds number will appear appropriately
in the momentum equation as a dimensionless parameter of the problem.
For example the dimensionless analog of the constant-density form of the
Navier-Stokes equations is

1
%—ltl+u-Vu+Vp—EV2u:O, V-u=0. (1.68)
A slight variant of this equation explicitly retains the pressure in the limit
of small Reynolds number:

0

where Rep = pT. Another way to express this is that an appropriate mea-
sure of the pressure forces created in Stokes flow is uU/L, not pU?. We will
drop the superscript + when this definition of pressure is used in dimen-
sionless variables.
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1.5.5 Frequency as a parameter

In problems of locomotion the body body motion is often essentially pe-
riodic, but in any case one can usually assign to a locomoter a typical
frequency w associated with its movements. In the preceding discussion of
the dimensionless Navier-Stokes equations we have taken the characteristic
time to be L/U, which ties the time scale to the speed of locomotion and
body size. The frequency w must be regarded as an independent parame-
ter, and so a second dimensionless parameter exists. We take this to be the
Strouhal number St, defined by

wlL

t = . 1.
St === (1.70)

If time is made dimensionless by multiplication by w instead of U/L, St
appears as a multiplier of %—‘t‘ in the Navier-Stokes equations.

A derived parameter which will be of interest to us is the frequency
Reynolds number Re,,, defined by Re, = StRe = wL?/v. This parameter
is distinguished as as a Reynolds number based entirely upon quantities
intrinsic to the locomoter, namely the size and typical frequency, and is
independent of whatever speed of locomotion which might result.. An im-
portant applicatioin of the frequency Reynolds number is to the onset of
forward flapping flight. In general both Re,, and Re are relevant to locomo-
tion, the first characterizing the movements causing locomotion, the second
characterizing the consequent speed of locomotion.

1.5.6  gravity

Locomotion in the presence of a gravitational field is of course extremely
important for birds and insects, and to a lesser extent for fish and mi-
croorganisms. The effects of gravity disappear if the locomoting body has
a density equal exactly to that of the fluid, at least provided that a free
surface is not present. Otherwise the body can be buoyant and the local
acceleration of gravity g is a parameter involved in determining its move-
ments. A dimensionless messure of gravity is usually given as the Froude
number

Fr=—— (1.71)

in terms of characteristic velocity and length. This number is a measure of
fluid acceleration in units of the acceleration of gravity.

Finally, the mass of the locomoting body, divided by the mass of an
equivalent volume of fluid give us a mass ratio s

M = Myody /P fiuidVoody - (1.72)
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1.5.7 Some typical parameter values in Nature

In Table 1 we show some values of Re, Re,,, and St for various organisms
which locomote in the natural fluids of air and water. We retain here the
natural division into low and high Reynolds numbers, namely the Stoke-
sian and Eulerian realms introduced earlier. We also indiate an intermediate
realm separating the two, representing roughly the ragne 1 < Re < 100. In
this range of Reynolds numbers, it is not possible to accurately describe
the flow field a dynamic any simpler than the fullk navier-Stokes equations.
The intermediate realm is of interest because the Stokesian and Eulerian
strategies of locomotion are very different. How then does Nature respond
to the ambiguity of intermediate range, where both of the extreme realms
are marginally relevant. Not surprisingly, one strategy is to utilize move-
ments wich work in both realms. One example of this is rowing, wherein
a paddle moves broadside on in a thrusting stroke, and is feathered in a
return stroke.

Locomoter [ z(cm) [ U (cm/sec) [ wec™) [ UL/v =Re [ wL/U =St | wL?®/v = Rey Remarks
Timit of Navier-Stokes theory.
Stokesiam Bacterium 10—5 102 —10—3 104 10—5 10 — 102 10-3 — 104 Brownian motion affects
smaller organisms.
realm Spermatozoan | 10~2 — 103 10—2 102 1072 — 103 10 — 102 101 Flag. diam.~ 10~ ° cm.
Ciliate 10—2 10—1 10 10—1 1 10—1 cilium lengtha 10~ 3 em.
Intermediate | Small wasp 10—2 101 10 101 1 101 U is wing speed hovering
realm Pteropod 5 5 1 25 1 10 Flapping mode.
EBulerian Locust 4 400 20 10% 2 103 Wing Re &~ 2000
realm Pigeon 25 102 — 103 5 10 .25 104 Wing Re ~ 10%
Fish 50 100 2 5 x 104 1 10%

Table 1: Some typical values of Re, St, and Re,, for various organisms.

One point deserves mention concerning the values of parameters in this
table. The range shown for R4 and Re,, is enormous cocmpared to that of
St. In fact, in the forward flight of birds as for swimming fish, St tends to
lie in the narrow range .2-.4 over a wide range of sizes. One can hope that
analysis of the mechanics of locomotion could explain why this is so.
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1.6 The geometry of locomotion

1.6.1 Standard and current shape

In the present section we shall consider a very specific example of locomo-
tion in order to introduce some useful geometrical concepts. We consider a
problem in two dimensions, a body which is the interior of a smooth defor-
mation of the circle 22 + 42 = 1, whose shape is determined by an implicit
equation S(z,y,t) = 0. Let us assume that the body moves in an infinite
expanse of fluid along a path determined by the given body motion and the
response of the fluid to this motion. The detailed fluid dynamics involved
in determining the motion will not be considered in the present discus-
sion. The question is simply this: How should we divide up the description
of the overall movement into the “intrinsic” body deformations and the
translation and rotation associated with swimming through the fluid? In-
tuitively, we must describe the “intrinsic” motions by “holding the body
fixed”. This entails selecting a standard Euclidean frame, and relative to
that frame defining the standard shape So(x,y,t) = 0. Then S(z,y,t) =0,
which for any value of ¢ we call the current shape, must describe both the
evolution of the standard shape and the translation and rotation of the Eu-
clidean frame in which the standard shape is defined, relative to its initial
position. In Figure 1.4 we show a rotation through angle 6 and a translation
from (0,0) to (X,Y) relative to the standard frame.

y
0,0) V
‘S}x,y,t)
Sq(x.y.0)

Figure 1.4: The standard shape Sy at times 0 and ¢, and the position of
the swimming body given by S(x,y,t). At time ¢ the origin of the standard
frame has been translated to (X,Y), and it has rotated through an angle 6,
giving the current shape at time t.

Now the fluid mechanics will presumably provide a means of computing
increments in 6 and (X,Y") as the body deforms incrementally. However in
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general this will depend not only upon the evolution of the standard shape,
but also upon the local position determined by (XY, ). This is because
the flow field created in the past will generally influence the effect of the
current body deformation. To jump to a three-dimensional example from
natural flight, a hovering hummingbird moves its wings in the presence
of eddies created by previous wing movements. It is not enough to know
the incremental movement of the wings at a given time to determine the
response of the body to this movement.

What, then, do we mean when we say that this two-dimensional body lo-
comotes? Webster’'s New Collegiate Dictionary defines locomotion as “Act
or power of moving from place to place; progressive movement; hence,
travel.” Tt is fair to say that implicit in this definition is the assumption
that the power driving the movement comes from the thing which moves (a
distinction which applies in the case of a locomotive and an electric tram).
The progressive nature of locomotion suggests steady movement in a defi-
nite direction, and this raises the question of how to deal with a periodic or
near-periodic orbit, e.g. one where the current shapes at times ¢t and ¢t +7T
are the same, and the standard shape has temporal period T'. If T were
sufficiently small this would not amount to progressive movement, but if it
were large enough we might want to consider the closed path as that of a
locomoting body.

One case of definite interest can be called steady locomotion, by which
we shall mean that there is a time 7" such that

Xt+T)=X({t)+AX, Y(t+T)=Y(t)+AX (1.73)

for some constants AX, AY and all times ¢. We need not consider for the
moment what motions might be responsible for the regularity or how 6
may vary. We then refer to (U, V) = (6X/T,AY/T) as the mean velocity
of locomotion. A basic problem is therefore, given a sequence of standard
shapes of a body, which repeats itself with some fixed period, to determine
if steady locomotion occurs and to determine (U, V) as a function of the
shape sequence, once the body is placed in a fluid of known properties.

It is sometimes useful to encode the positional information into a 3 x 3

matrix
cos —sinf X

R=|sind cosf Y |. (1.74)
0 0 1

We call R the positional matriz. Note that if z,,y, is a point on the
standard shape at time ¢ the R - v locates the point on the current shape
S(x,y,t) =0, where v is the column vector (z,,yp, 1)T. Suppose now that
the current shape is perturbed incrementally from time ¢ to time t + dt.
The claim is that the matrix

d
Adt=R'. d—f:dt (1.75)
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will be the incremental rigid-body motion relative to the current frame.
Indeed, we compute

cos sinf@ —Xcosf—Ysinf

R'=|[ —sinf cosf Xsinf—Ycosd |, (1.76)
0 0 1
and so
0 —df dXcosf+dY sinf
Adt=1dl 0 —dXsinf+dYcosf |. (1.77)
0 0 0

Thus we obtain the correct incremental movement of the point (z,,y,) on
the standard shape, relative to the current frame:

A-(zp, Yp, DTdt = (—ypdf+dXcosb+dY sin 6, x,df—dX sin+dY cos ¥, 0),
(1.78)
In general the value of A obtained at a given time will depend upon
the prior history of motion, hence upon both R and the body velocity in
the standard frame for preceding times. To find R(t) we would need to
solve dR/dt = R- A(t), assuming the form of A could be determined given
the history of R(t) and the evolution of the standard shape. In the next
Chapter we study the Stokesian realm of locomotion, and it turns out that
the situation is much simpler, and the geometry of the standard shape
can in fact be very useful to the theory. In the Stokesian realm, A can
be computing at each time instantaneously and directly from the rate of
change of the standard shape.

1.7 The basic half-plane problem

To illustrate the solution of the Navier-Stokes equations with a non-slip
condition in the simplest setting, we consider a boundary consisting of
small deformations of the planar surface z = 0. Our goal is to determine
the effect of the deformations on the fluid in the half-space z > 0.

Since we deal with small deformations, it will be helpful to assume as well
that the surface is at all times given by an explicit equation zg = f(z, y,t),
i.e. there is no overturning of the surface. We do allow the boundary to be
otherwise arbitrarily deformable as an elastic surface, so that for example
it can remain plane while executing tangential stretching as a function of
x,y,t. Thus we actually deal with a body deformation described by the
vector function

xp = f(z,y,1t). (1.79)
We are interested in a rather general statement of this problem, in order to
discuss a number of related issues in locomotion and transport. However
the problem is sufficiently difficult analytically to warrant first looking at
the simplest special cases.
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1.7.1 The swimming of a stretching sheet in Stokes flow

In a seminal paper [10], G.I. Taylor investigated the swimming of a sheet
at low Reynolds number. He assumed a fluid of constant viscosity and
density, and neglected the inertial terms. He also restricted the problem to
two dimensions. Thus the equations for u, v, p are assumed to be

Op Ou vy (1.80)

Op
= _yVu=0 =-— =
pya=" 83:+8y

Viu=0
ay I'L v b

oxr

To illustrate the calculation we take the special boundary condition
xp =+ acos(kr —wt),yp =0, (1.81)

so that the body surface remains plane but is stretched in the z-direction
as a progressive wave, the wave-number and frequency of the wave being
k,w. . The boundary conditions on the flow are therefore

u(z + acos(kx —wt),0,t) = awsin &, v(x,0,t) =0, £ = kx —wt. (1.82)

Note that the position at which we impose the condition on u is moving.
This introduces a natural expansion in the small dimensionless parameter
ak.

We allow for the fact that the dynamic equilibrium of the stretching
sheet and the fluid may require that u tends to a finite non-zero number as
y — +00. (We shall consider here only the upper half-plane.) By Galilean
invariance the flow can then be interpreted as the swimming of a sheet
calculated relative to a co-moving frame. Thus we suppose

u—Uwv—0, as y — 0. (1.83)

To satisty the last of (1.80) we introduce the streamfunction (z,y,t),
where u = 9,,v = —1),. Elimination of the pressure from the first two
equation in (1.80) shows that ¢ is a biharmonic function :

Vi =0. (1.84)
Acceptable solutions of (1.84) have the form
Vm (2,y,1) = (A + kBpy)e ™™ sinm(kr — wt)

H(Cp + kDpy)e™™ Y cos m(kx — wt) + Uy, (1.85)

where A,,, B,,Cy, Dy, U, are arbitrary constants. Thus ¢ will have the
form of an infinite series of terms of the form (1.85). We gather these as a
series in increasing powers of ak.
The leading term, 11, is or order wk~—2 x ak and is determined by the
conditions
Iy

——(x,0,t) = awsin¢,

O (40,4) = 0, (1.86)
dy

ox
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Thus we find easily A; = C1 = D; = U; =0, kB; = aw, so that
Y1 = yawe " sin €. (1.87)

Since Uy = 0, it can be said that the sheet does not swim to leading order.
The second-order terms correct for the displaced location of the boundary
condition on wu:

0
u(z +acos&,0,t) =ui(x,0,t) + %(m, 0,t) x acos& + ug(x,0,t) ...
= awsin¢. (1.88)
Thus us, vo satisfy the conditions
8’[1,1
uz(x,0,t) = _8—:c(x’ 0,t) X acos&,va(x,0,t) = 0. (1.89)

The right-hand-side now involves a cos?(¢)and so the corresponding term
1o takes the form

1 1
g = —§wka2ye*2ky cos 2¢ — §wka2y. (1.90)

Thus Uy = —%kaQw determines the leading term of the expansion of the
swimming velocity. Assuming k,w > 0 we see that the flow at infinity is
in the direction of negative x, so that the swimming velocity has the same
sign as the velocity of propagation of the wave of stretching. The physical
reason for this lies in the effect of the boundary conditions on the eddy
structure near the sheet. The propagating wave of stretching introduces an
asymmetry into the eddy pattern, as we display in Figure 1.5.

Figure 1.5: ¢(z,y, t), in coordinates (£, n) = (kz—wt, ky), for a stretching
plane sheet in Stokes flow, with k =w =1,a = .3.
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The flow along the top of the figure is from right to left. Note that the
flow near the wall is dominated by motion in this direction. The counter-
rotating eddy on the left exerts a thrust to the right at the wall, but this is
more than compensating by the dominant thrust to the left. The reaction
of this net force on the fluid is what drives the sheet through the fluid.

The last remark emphasized our calculation as one of swimming. On the
other hand we might just as well have stated that the effect of the sheet is
to drive a uniform flow extending to infinity! This seems paradoxical, that a
sheet could drive an infinite expanse of fluid into uniform motion. The res-
olution of this lies in the fact that the sheet is also infinite in expanse. Any
finite piece of the sheet would have not such an effect at infinity, although
it would swim relative to the fluid at infinity. The speed of swimming would
presumably be altered somewhat by the finite size.

We draw attention as well to the relation of our calculation to a related
estimate of pumping in a channel with flexible walls. It is reasonable to
assume that in a channel of width H >> k=, with two walls executing the
movements considered here, fluid would be pumped with a velocity given
approximately by Us.

1.7.2  Finite and large Reynolds numbers

We now consider the problem of the preceding subsection with no special
assumption on the Reynolds number, still retaining the same form and
small amplitude of stretching. It is instructive now to adopt a dimensionless
formulation.* If U = w/k, L = 1/k, T= 1/w are the reference velocity,
length, and time, the dimensionless momentum equations are now

Re[—a—5 + ua—§ + v(%](u, v) + (pe, py) — V2(u,v) =0, (1.91)
where 7 = ky and as before £ = kz — wt, V2 now being in the latter vari-
ables. We have assumed here, based upon the boundary conditions (1.81)
that the variable depends only upon &, 7. Since velocities remain small, of
amplitude € = ak, the expansion of the dimensionless streamfunction v is

U)(ga 77) = f‘/’l (55 77) =+ 621/)2(55 77) +.. (192)
where, after eliminating pressure
2
Reavag/’l + Vi, = Lpy = 0. (1.93)

4The formulation of physical problems in dimensionless variables usually has
the advantage of clarifying the parametric structure of a problem. By clearly ex-
hibiting the sizes of dimensionless parameters, it is far easier to arrive at useful
and appropriate simplifications of the problem. On the other hand the dimen-
sionless forms expel useful checks on algebra made possible by the dimensional
consistency that must be maintained in the mathematical equations.
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We see that we may write

1 = R[Ae™ " 4 Be M8 N = /1 —iRe. (1.94)
The boundary conditions (1.86) then yield
1 = Re R[N+ 1) (7" — e= T8y, (1.95)

For v9 we now have two contributions ¥s = 121 + 192. The first comes
from the shifted boundary condition and is obtained as in the case of Stokes
flow:

Vo1 = —£R€71§R[(€72n — e PMeHE (1 4+ N)] = /2. (1.96)

The second contribution comes from the nonlinear terms and satisfies null
conditions on 17 = 0. The equation satisfied by 199 is

(1, V)
a&m)

Since we will focus on the swimming velocity, we take the £-average of
(1.97). With (-) denoting this average, using (1.94) we obtain

d* (1h22)
dn?t

L1/)22 = —Re (197)

Ré? . .
- —Te%[AB*(l F A e AL [ BI2(A+ A%)e MADN] (1.98)
Integrating three times with respect to 1 and using the conditions at infin-
ity, we have

(u22)(0) = Uaa + RTEQSEE[AB*(I +A) 2+ [BEA+ )7 =0, (1.99)

Since A = —B = (1 + A\)/Re,

Sl |1+ A2
Uz = 2%[14—)\* - (A+A*)2]' (1.100)

Since R(N\) = F(Re) = [(1 4+ /1 + Re®)/2]'/2, this expression can be re-
duced to

1
Uss = Z[1/F ~1]. (1.101)
But Uz = —1/2, see (1.96), so we arrive at the swimming velocity
1
U:62U2:621[1/F—3]. (1.102)

We thus see that as Re increases from 0 to oo the swimming speed increases
from our earlier result of 1/2, but remains finite and equal to 3/4 in the
limit.®

®In dimensional variables, the streamfunction acquires the prefactor w / E? so
(1.102) takes the form (see [11]) U = a*kwi[1/F — 3].
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We have considered this calculation early in our study, because it high-
lights the problems we face with the inviscid limit Re — oco. Eulerian fluid
dynamics generally drops the non-slip condition as inapplicable to a fluid
with zero viscosity, sometimes referred to as a “slippery” fluid.® The nat-
ural boundary conditions are those requiring the fluid to have zero normal
component of velocity relative to any rigid surface. In the present case of
a stretching plane surface, the natural boundary condition on the fluid is
simply that v = 0 on the wall. This leaves the tangential component free,
and for a plane wall y = 0 the motion in the z-direction is indeterminant.
One can also say that the tangential motions associated with the stretching
sheet should have no effect on the fluid. Our calculation shows that this
inviscid result to not the same as the inviscid limit of the viscous flow.
The dynamic balance imposed at finite Reynolds number is retained in the
limit. This distinction between the inviscid theory and the limit for large
Reynolds number will be a recurring theme of our investigations. In effect
we see that both locomotion and transport can be subject to this paradox-
ical property of the inviscid limit. This is problem often referred to as a
non-uniformity of the (inviscid) limit.

How can we understand this non-uniformity in the present example? The
answer must lie in the boundary-layer structure of the flow once Re become
large. We can see this structure in the appearance of the factor e 7. The
issue after all is this: can we have a non-zero uniform flow adjacent to a
planar surface where the no-slip condition is satisfied, such that there is no
average x-component of force on the surface? The solution in Stokes flow
answers this in the affirmative. In that case the viscous stresses dominate
inertia, so this is a very essential dynamical balance.

In the limit of large Re, The viscous stress tensor has, in dimensionless
variables, a prefactor Re™!. The factor e *" indicates a variation near
n = 0 on the scale A~!, of order Re~'/2 and since u is O(1) the velocity
derivatives are of order Re'/?. Thus the viscous force associated with the
boundary layer is actually small, of order Re~*/2. (Note that the O(1) scale
in 7 gives an even smaller contribution to the viscous force.) These forces
tend to zero under the inviscid limit as they should, but nevertheless the
free-stream velocity for dynamical equilibrium can and does remain finite.
To put this in another way, in the limit the sheet slides through the fluid
easily, so the swimming speed can be decided by the small forces developed
in the boundary layer.

We have thus shown that the sheet “can swim in an inviscid fluid”,
and determined the speed, but the statement only has meaning when in-

6Such “ideal” fluids are never exactly obtained at ordinary temperatures and
pressures, but are approached in the superfluid component of liquid helium. The
relevance of the inviscid theory to naturally occurring flows, well outside of bound-
ary layers, is an important classical problem which is discussed in the standard
textbooks.
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terpreted as a limit. We add that a more generalized half-plane problem
involving out-of-plane deformations leads to similar conclusions and will be
discussed in section ?77.
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1.8 Exercises

1.1. The determinant of J may be defined by

- N 8331 8352 83:3
|J| - stk 8&1' 8CLJ' 8ak'

Here €;5; = 1 if 45k is an even permutation of 123, = —1 if an odd permu-
tation, and is zero otherwise. Note also that

833m 83:2 83:3 - -
quk—aai %8—% =0,m=2,3.

Use these facts to establish (1.9).

1.2. Verify (1.20) by differentiating an integral over a parcel. Alterna-
tively obtain it by combining (1.9) and (1.19).

1.3. In one dimension, the Eulerian velocity is given to be wu(z,t) =
2z/(1 +t). (a) Find the Lagrangian coordinate z(a,t). (b) Find the La-
grangian velocity as a function of a, t. (¢) Find the Jacobian dx/da = J as
a function of a, t. (d) If density satisfies p(x,0) = = and mass is conserved,
find p(a,t) using the Lagrangian form of mass conservation. (e) From (a)
and (d) evaluate p as a function of z, ¢, and verify that the Eulerian con-
servation of mass equation is satisfied by p(z,t), u(z,t).

1.4. Let D, denote a fluid volume in three-dimensions. Prove that, for
any smooth function g(x, t),

d
— pg dV(x) = / pdg/dt dV (x).
dt D, D,
Here p is the density, satisfying the mass conservation equation p; + V -
(pu) =0, and d/dt = % +u -V is the material derivative.
1.5. Consider the “point vortex ” flow in two dimensions,

-y r 2 2
=UL(—"=,5—— 0
(u,v) ($2+y2,$2—|—y2),x +y 7£ )
where U, L are reference values of speed and length. (a) Show that the
Lagrangian coordinates for this flow may be written

x(a,b,t) = Ry cos (wt + 6p), y(a,b,t) = Rosin (wt + 6p)

where RZ = a® + b?,6y = arctan (b/a), and w = UL/RZ. (b) Consider,
at t = 0 a small rectangle of marked fluid particles determined by the
points A(L, —Ay/2), B(L + Az, —Ay/2), C(L+ Az, Ay/2), D(L, Ay/2). If
the points move with the fluid, once point A returns to its initial position
what is the shape of the marked region? Since (Axz, Ay) are small, you may
assume the region remains a parallelogram. Do this, first, by computing the
entry dy/da in the Jacobian, evaluated at A(L,0). Then verify your result
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by considering the “lag” of particle B as it moves on a slightly larger circle
at a slightly slower speed, relative to particle A, for a time taken by A to
complete one revolution.

1.6. Lagrangian coordinates can use any unique labeling of fluid particles.
To illustrate this, consider the Lagrangian coordinates in two dimensions

1 1
z(a,b,t) =a+ Eekbsink(a—k ct), y=>b— Eekbcosk(a + ct),

where k, ¢ are constants. Note here a,b # 0 are not the initial coordinates.
By examining the determinant of the Jacobian, verify that this gives a
unique labeling of fluid particles. (These waves, which were discovered by
Gerstner in 1802, represent gravity waves if ¢> = g/k where ¢ is the accel-
eration of gravity. They do not have any simple Eulerian representation.)

1.7. Consider the two-dimensional Eulerian flow (u,v) = U/L(x, —y).
Show that a fluid particle in the first quadrant which crosses the liney = L
at time ¢t = 0, crosses the line z = L at time ¢t = % log (UL/%) on the
streamline Uzy/L = 1. Do this two ways. First, consider a line integral
of u - ds/(u? + v?) along a streamline. Then compute differently using
Lagrangian variables.

1.8. Prove that any potential flow in a bounded, simply connected do-
main must vanish, provided the normal velocity component vanishes at the
boundary.

1.9. (Non-existence of large hummingbirds). Because of stress limitation
on bones, it is known that the power available for the hovering of birds is
proportion to L?, where L is a typical length representing the size of the
bird. Show that the power required for hovering is proportional to L7/2.
Assume bird weight proportional to L2. Use the fact that the required
power is the speed U of the downward jet created in hovering times the
force needed to hover. Assume the downward jet area is proportional to
L?, and consider the momentum it carries.

1.10. Find a solution of the Navier-Stokes equations for a flow in two
dimensions of the form u = (u(y, t),0), p =0, in the domaian bounded by
y = 0, H. The surface y = 0 oscillates sinusoidally with amplitude A and
frequency w. The upper surface y = H is held fixed. Because of the no-
slip condition, we must have u(0,t) = wA cos(wt), and w(H,t) = 0. Show
that u(y,t) satisfies the heat equation u; — vuy, = 0 and solve for u(y,t)
by separation of variables. Compute the force (per unit area) on the two
walls, and the momentum per unit area of the fluid, and verify Newton’s
law (force on fluid equals time derivative of total momentum, all per unit
area).

1.11. Define the complex derivatives

g .0 o .0
%Z%(a—x“a—y)’ %Z%(a—x‘la—y)-

Applied to a complex-valued function w = F(z,y) + iG(z,y), where f, g



1.8 Exercises 35

are very smooth, verify that

(a) Z—f;’:()é V2F =0, V%G = 0;

()% = 0= V4F =0,V'G = 0;

Also show that % = 0 for any analytic function of the complex variable
z = x + 1y, and that %(;) = f’(2). Thus show that general solutions of
the biharmonic equation V4 = 0 in two dimensions are provided by the
real and imaginary parts of Zf(z) + g(z), where f, g are analytic functions
of a complex variable. Relate this general result to the particular solutions
(A 4+ By)e™*®)(sin ka, cos kx) used in the study of the swimming sheet.

1.12. What is wrong with the following reasoning? In the planar, stretch-
ing swimming sheet, the plane just oscillates back and forth, just like the
the case of an oscillating plane wall. But we can formulat the latter problem
as follows: we have u,v = (u(y,t),0), with u; — vu,, = 0, and conditions
u(oo,t) = 0,u(0,t) = Acos(wt). The solution is easily seen to be ezactly

u = Ae YV cos(wt — y/over2/v.

The flow decayed exactly to zero exponentially in y. The same thing should
happen for the stretching flat sheet sheet, so in fact it cannot swim!
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