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Chapter 8

The boundary layer

The concept of the boundary layer is a classic example of an applied science
greatly influencing the development of mathematical methods of wide applica-
bility. The key idea was introduced in a 10 minute address in 1904 by Ludwig
Prandtl, then a 29 year old professor in Hanover, Germany. Prandtl had done
experiments in the flow of water over bodies, and sought to understand the effect
of the small viscosity on the flow. Realizing that the no-slip condition had to
apply at the surface of the body, his observations led him to the conclusion that
the flow was brought to rest in a thin layer adjacent to the rigid surface. His
reasoning suggested that the Navier-Stokes equations should have a somewhat
simpler form owing to the thinness of this layer. This led to the equations of
the viscous boundary layer. Boundary-layer methods now occupy a fundamental
place in many asymptotic problems for partial differential equations.

8.1 The limit of large Re

Let us consider the steady viscous two-dimensional flow over a flat plate aligned
with a uniform stream (U, 0). In dimensionless variables the steady Navier-

0  L
x

y u=U

Figure 8.1: Boundary layer on a finite flat plate.
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Stokes equations in two dimensions may be written

u · ∇u+ px − 1

Re
∇2u = 0, (8.1)

u · ∇v + py − 1

Re
∇2v = 0, (8.2)

ux + vy = 0. (8.3)

We are dealing with the geometry of figure 8.1. The boundary layer is seen to
grow in thickness as x moves from 0 to L. This suggests that the term u · ∇u
in (8.1) has been properly estimated as of order U2/L in the dimensionless
formulation, and so should be taken as O(1) at large Re in (8.1). If this term is
to balance the viscous stress term, then the natural choice, since the boundary
layer on the plate is observed to be so thin, is to assume that the y-derivatives
of u are so large that the balance is with 1

Reuyy. Thus it makes sense to define

an stretched variable ȳ =
√
Rey. If we now apply the stretched variable to (8.3),

still taking ux as of order unity, then in order to keep this essential equation
intact we must compensate the stretched variable ȳ by a streched form of the
y-velocity component:

v̄ =
√
Rev. (8.4)

Prandtl would have been comfortable with this last definition. The boundary
layer on the plate was so thin that there could have been only a small velocity
component normal to its surface. Thus the continuity equation will survive our
limit Re→ ∞:

ux + v̄ȳ = 0. (8.5)

Returning now to consideration of (8.1), retain the pressure term px as O(1)
as well so that the simplified equation, obtained in the limit Re → ∞ in the
stretched variables, amounts to dropping the term 1

Re
uxx:

uux + v̄uȳ + px − uȳȳ = 0. (8.6)

Finally, using these stretched variables in (8.2) we have

pȳ = − 1

Re
(uv̄x + v̄v̄ȳ − v̄ȳȳ) +

1

Re2
v̄xx. (8.7)

Thus in the limit Re→ ∞ the vertical momentum equation reduces to

pȳ = 0. (8.8)

We thus see from (8.8) that the pressure does not change as we move ver-
tically through the thin boundary layer. That is, the pressure throughout the
boundary layer at a station x must be the pressure outside the layer. At this
point a crucial contact is made with inviscid fluid theory. The “pressure out-
side the boundary layer” should be determined by the inviscid theory, since the
boundary layer is thin and will presumably not disturb the inviscid flow very
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Figure 8.2: Boundary layer over a general body with varying U(x).

much. In particular for a flat plate the Euler flow is the uniform stream- the
plate has no effect- and so the pressure has its constant free-stream value.

Prandtl’s striking insight is clearer when we consider flow past a general
smooth body, as in figure 8.2. Since the boundary layer is again taken as thin in
the neighborhood of the body, curvilinear coordinates may be introduced, with
x the arc length along curves paralleling the body surface and y the coordinate
normal to these curves. In the stretched variables, and in the limit for large Re,
it turns out that we again get (8.6)-(8.8), only now (8.8) must be interpreted to
mean that the pressure is what would be computed from the inviscid flow past
the body. If p0, U0 are the free stream values of p, u, then Bernoulli’s theorem
for steady flow yields along the body surface

peuler = p0 +
1

2
− 1

2
U2(x) = p(x), (8.9)

and it is this p(x) which now applies in the boundary layer, by (8.8). Thus
the inviscid flow past the body determines the pressure variation which is then
impose on the boundary layer through the now known function px in (8.6).

We note that the system (8.6)=(8.8) are usually called the Prandtl boundary-

layer equations.

We are giving here the essence of Prandtl’s idea without any indication of
possible problems in implementing it for an arbitrary body. The main problem
which will arise is that of boundary layer separation. It turns out that the
function p(x), which is determined by the inviscid flow, may lead to a boundary
layer which cannot be continued indefinitely along the surface of the body. What
can and does occur is a breaking away of the boundary layer from the surface,
the ejection of vorticity into the free stream, and the creation of free separation
streamline similar to the free streamline of the Kirchoff flow we considered in
chapter 6. Separation is part of the stalling of an airfoil at high angles of attack,
for example.

8.2 Blasius’ solution for a semi-infinite flat plate

We now give the famous Blasius solution of the boundary layer past a semi-
infinite flat plate; geometrically the problem is that of figure 8.1 with L = ∞.
The fact that the plate is infnite will mean that the boundary layer extends
to infinity. We will comment on this later. For the moment simply note that
we have now expelled the length L from the problem, even though we used
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it previously to define a Reynolds number, which number we then let tend to
infinity. Without a length in the problem, however, it becomes much simpler to
solve, because the no-slip conditions applies on the entive line x > 0, ȳ = 0.

We recall that for the aligned flat plate the pressure in Prandtl’s boundary
layer equations is zero, so we seek to solve

uux + v̄uȳ − uȳȳ = 0, ux + v̄ȳ = 0, (8.10)

subject to the conditions u = v̄ = 0, ȳ = 0, x > 0, and u → 1 as ȳ → ∞, x > 0.
We can satisfy the solenoidal condition in the usual way with a boundary-layer
stream function ψ̄ =

√
Reψ such that u = ψ̄ȳ, v̄ = −ψ̄x. We then observe that

our problem has a self-similar structure in the following sense. The equations
and conditions are invariant under the group of “stretching” transformations

x→ Ax, ȳ → Bȳ, ψ̄ → Cψ̄, (8.11)

provided that A = B2 and B = C. Indeed, the condition u = 1 transforms to

uC/B = 1 so we must have B = C. Also the term uux scales like C2

AB2 while
uȳȳ scales like C/B3, and the equality of these two factors requires A = BC.
The remaining terms follow suit and so (8.10) and the conditions are invariant
under the stated conditions A = B2 = C2. Now the combination η = y/

√
x is

then invariant under (8.11), and therefore so is the equation ψ̄ =
√
xF (η) for

any function F . If we assume a ψ̄ of this form and substitute it into

ψ̄ȳψ̄xȳ − ψ̄xψ̄ȳȳ − ψ̄ȳȳȳ = 0, (8.12)

it is straightforward to show that we get

−1

x

[1

2
FF ′′ + F ′′′

]

= 0. (8.13)

The conditions to be satisfied are then

F (0) = F ′(0) = 0, F ′ → 1, η → ∞. (8.14)

The simplest way to solve this problem is to replace it by the following
initial-value problem:

1

2
GG′′ +G′′′ = 0, G(0) = G′(0) = 0, G′′(0) = 1. (8.15)

When this problem is solved (a simple matter using ode45 in MATLAB on an
interval 0 < η < 5 say, we obtain values of G′(η) similar to figure 8.3 (the
solution of the actual problem) but asymptoting to c = 2.0854 instead of 1.
However if G(η) is a solution of our equation, so is AG(Aη) for any constant A.
Since G ∼ cη + o(η), η → ∞, we set

F (η) = c−1/2G(c−1/2η). (8.16)

This give the curve for F ′(η) shown in figure 8.3. One finds

F (η) ∼ η − 1.7208 + o(1), η → ∞, (8.17)

and also F ′′(0) = c−3/2 = .332
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Figure 8.3: The Blasius boundary layer velocity profile.

8.2.1 Discussion of the Blasius solution

Recalling that the dimensional form of the stream function is ULψ, the dimen-
sional form of ψ is ULψ = ULR−1/2ψ̄. In terms of x, y which have dimensions,

ψ̄ = (x/L)1/2F
( √

Ry/L√
(x/L)

)

. Thus with dimensions fully restored the stream func-

tion may be written
√
UνxF

(

y

√

U

νx

)

. (8.18)

confirming the fact that the problem we have solved is free of a length L. From
the asymptotic behavior of F for large η we then have the dimensional stream
function for large y in the form

Uy − 1.7208
√
Uνx+ o(1), y → ∞. (8.19)

This combination of terms vanishes when y = 1.7208
√

νx/U. This shows that
well away from the plate the streamlines look like those over a thin parabolic
cylinder. This process of “lifting” the distant streamlines makes the plate look
like it has some thickness, which grows downstream as

√
x. This thickness,

which has been given the term displacement thickness, can be understood from
the nature of the volume flux in the boundary layer. As the boundary layer
grows with increasing x more and more fluid parcels originally moving with
the free-stream velocity U , are found to be moving more slowly. This depleted
volume flux near the wall, which increases with x, must be compensated by an
outward full of volume away from the wall. It is this outward flux which lifts
the streamlines to their parabolic form.
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The displacement thickness can be given a precise definition as follows. Let

δ(x) =

∫ ∞

0

(1 − u/U)dy. (8.20)

Then Udδ(x) = V (x)dx where V (x) is the compensating upward velocity is
equal to the integral of U − u through the layer, which is the reduced volume

flux through the boundary layer. But according to (8.18) u = UF ′
(

y
√

U
νx

)

and

so, since F (η) ∼ η − 1.7208 + o(1) we have

δ(x) =

√

νx

U
lim

η→∞
(η − F (η)) = 1.7208

√

νx

U
. (8.21)

Thus

V (x) = 1.7208Uδ′(x) = .8604

√

Uν

x
= dy/dx, (8.22)

where y(x) = 1.7208
√

νx/U is the zero streamline of the “effective body” whose
thickness we may now identify with the displacement thickness as defined.

It is interesting to ask what error is being made if we substitute the Blasius
solution into the full Navier-Stokes equations and look at the remainder. We
consider here only the dimensionless form of the x-momentum equation. There
the terms we expelled to get the boundary layer equation were 1

Ruxx and px.
Substituting u = F ′(η) we obtain the exact equation

px − 1

x

[1

2
FF ′′ + F ′′′

]

− η

4x2R

[

3F ′′ + ηF ′′′
]

= 0. (8.23)

We see that the second bracketed term fails to be smaller that the first when
xR = O(1). Thus near the front edge of the plate the boundary layer equations
are not uniformly valid. In a small circular domain of order 1/R in radius about
the origin, the full Navier-Stokes equations can be shown to govern the fluid
flow. This small non-uniformity does not affect the validity elsewhere, however.
We can assert this because of the existence of the Blasius solution, and the fact
that experimental measurements confirm its validity at large R.

As a final remark concerning the Blasius solution, we note that the finite

flat plate, of length L, can be approached with exactly the same apparatus.
Although the Prandtl boundary-layer equations fail to hold at x = L as well as
x = 0, the development of the layer on the plate is unaltered to first order. In
paticular the drag on the plate, accounting fro both sides is given by

D = 2µ

∫ L

0

uy(x, 0)dx = 2µU

∫ L

0

√

U

νx
F ′′(0)dx (8.24)

This yields

D = 2µU · 2
√

UL

ν
· .332 = 1.328ρU2/

√
R. (8.25)

Thus friction drag on a plate is O(R−1/2) at large R, at least in a laminar flow.
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8.2.2 The Falkner-Skan family of boundary layers

An immediate generalization of the Blasius solution is to boundary layers whose
pressure gradient is some power of x. From the Bernoulli equation for steady
flow, a gradient px = −mA2x2m−1 results from an external stream with velocity
U(x) = Axm. We remark that such a velocity variation occurs on the surface
of an infinite wedge aligned with a constant free stream, provided that the half-
angle of the wedge is m

m+1
π. Then x is measured along the surface of the wedge,

and y is measured perpendicular to the surface. So again there is no length in
the problem. The equations to be solved are then, in dimensional form,

uux + vuy −mA2x2m−1 − νuyy = 0, ux + vy = 0. (8.26)

Since there is no length, we are led to look for a similarity solution . If we try
ψ = xαF (y/xβ), then the factors of x coming from insertion into (8.26) will
cancel, leaving an ordinary differential equation, provided that

α ==
1 +m

2
, β =

1 −m

2
. (8.27)

Setting

ψ = AKx
1+m

2 F (η), η =
y

Kx
1−m

2

, K =

√

ν

(m+ 1)A
, (8.28)

the equation which results (see problem 8.1) is

F ′′′ +
1

2
FF ′′ +

m

1 +m
(1 − F ′2) = 0. (8.29)

The boundary conditions are again F (0) = F ′(0) = 0, F ′(∞) = 1.
We show in figure 8.4 several profiles for variousm. For m positive existence

and uniqueness of the solution has be established, and the profiles become some-
what steeper. The cases m > 0 are said to correspond to a favorable pressure

gradient, U ′(x) > 0 and p′(x) < 0. The boundary layer can be said to respond
favorably to a pressure which decreases in the streamwise direction. When m
becomes negative, the story is significantly different. Uniqueness of the profile
can be lost, although profiles such that u ≥ 0 for all η can be shown to be unique.
In figure 8.4 we show the limiting case of such non-negative profiles, occurring
when m = −.0904. Note that F ′′(0) = 0 for this profile. This implies du/dy
vanishes at the wall, and so the viscous friction force is zero there. Positive
pressure gradients are said to be unfavorable, and can lead to the phenomenon
of boundary layer separation. We will return to the separation problem below.
Here the suggestion is that m < .0904 would lead to a boundary layer which
has a negative value of uy at the wall, and so would involve a region of reversed
flow; the streamline ψ = 0 must actually bifurcate from the wall, so the term
“separation” is appropriate.

We may summarize the general picture of high Reynolds number flow, as
provided by the boundary-layer concept, as follows. For a general finite body
in a flow, there should be a portion of the surface of the body, upstream of any
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Figure 8.4: The Falkner-Skan profiles for various m.

point or point of separation of the boundary layer, where the flow is that of
an inviscid fluid except within a small layer adjacent to the body, called the
boundary layer. Within the boundary layer, the pressure gradient is imposed
by the inviscid exterior flow. At the same time the boundary layer modifies the
inviscid flow slightly due to its displacement thickness. The picture is clouded
by separation, and the tendency of high Reynolds number flows to be unstable
and hence time dependent.

Finally, with the example which follows we indicate how boundary-layer
techniques can arise in a somewhat different context.

Example 8.1

We give here as example of the application of boundary-layer ideas to a

y

x

M

Figure 8.5: A two-dimensional laminar jet emerges from a slit in a wall.
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different physical problem. The idea is to model a laminar two-dimensional
steady jet issuing from a small slit in a wall, see figure 8.5. We are going to
treat the jet as “thin” when Re� 1, and so apply Prandtl’s reasoning to obtain
again his boundary layer equations. Since pȳ = 0 the is invariant through the
jet, and assuming that at ȳ = ∞ we have uniform conditions, we may assert
that p is independent of x, as in Blasius’ semi-infinite plate problem. There is
no length in the problem (ignoring the small width of the slit), so again we are
led to try a solution of the form ψ = xαF (y/xβ). The condition that u · ∇u
and uyy have common factors of x requires that α + β = 1. We do not have
a nonzero value assumed by F ′ at infinity, as in the Blasius problem. However
there is a new physical constraint. Since the pressure is constant throughout,
there are no forces available to cause the net flux of x-momentum to vary as a
function of x. Consequently the integral (omitting a constant factor of ρ)

M =

∫ +∞

−∞
u2dy (8.30)

must be independent of x. This requires that β = 2α, so that α = 1/3, β = 2/.1

Substituting ψ = x1/3F (y/x2/3) into the dimensional equation for ψ,

ψyψxy − ψxψyy − νψyyy = 0, (8.31)

we get the equation

νF ′′′ +
1

3
(FF ′)′ = 0. (8.32)

We require that F ′′, F ′ → 0 as η → ∞ and
∫ +∞

−∞
F ′2dη = M. (8.33)

Integrating twice,

1

6
F 2 + νF ′ =

1

6
F 2
∞, F∞ = F (∞). (8.34)

The integral yields

F = F∞ tanh
(F∞η

6ν

)

. (8.35)

Applying the condition (8.33) we obtain

ν

4
F 3
∞ = M, (8.36)

which determine F∞ in terms ofM . The velocity component u, which dominates
in the jet, is given by

u =
F 2
∞

6νx1/3

1

cosh2
(

F∞η
6ν

) . (8.37)

1To get this by a stretching group, x → Ax, y → By, ψ → Cψ, the momentum equation

requires A = BC as in the Blasius solution, but the momentum flux constraint is invariant

when C2 = B, so then C3 = A. Thus y/x2/3 is invariant, and ψ must be proportional to

x1/3.
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Note that the jet spreads as x2/3 and decays as x−1/3. In practice it is difficult
to establish a laminar jet because of instabilities, and the jets obtained in the
laboratory are usually turbulent.

8.3 Boundary-layer analysis as a matching prob-

lem

We now digress somewhat to indicate some of the mathematical ideas that
have grown our of Prandtl’s approach to high Reynolds number flow. We have
suggested that there is a kind of interaction at work between an “outer”, inviscid
flow, and an “inner” boundary-layer flow. That is, the pressure gradient is
fundamentally an outer condition imposed on the boundary layer. On the other
hand the boundary-layer modifies somewhat the strreamlines well away from
the body, in the inviscid flow. We now explore a model problem in one space
dimension, involving a singular perturbation of an ordinary differential equation.
The small parameter ε will replace 1/Re, and the problem is not one of fluid
dynamics; nevertheless there will be an inner solution and an outer solution that
will be analogous to our viscous boundary layer and out outer inviscid flow. We
suggest that the model indicates how a more formal approach to boundary layer
theory might proceed, although we shall not pursue this further here.

The model problem is the following: let f(x) = f(x, ε) satisfy

εf ′′ + f ′ = a, 0 < a < 1, 0 ≤ x ≤ 1, y(0) = 0, y(1) = 1. (8.38)

The “singular” adjective is usually applied to problems where the limiting op-
eration, in this case ε→ 0 reduces the order of the differential equation, in our
case from order two to order one.

We first define our “outer problem”, analogous to the inviscid Euler flow.
We bound x away from zero, 0 < A ≤ x ≤ 1, and apply the limit ε → 0 to the
model equation. This gives the reduced system

f ′ = a. (8.39)

We apply the condition at x−1 to the solution of this reduced equation, yielding

fouter = ax+ 1 − a. (8.40)

We see that fouter does not satisfy the condition on f at x = 0. This adjustment
will happen in a boundary layer near x = 0. So we consider with Prandtl how
to deal with the combination εfxx. If derivatives become large this combination
need not be small. On the other hand fx can also be large, so that it is tempting
to suppose that at least minimally εfxx and fx must be the same size. This
suggests function of x/ε, so we define the stretched variable x̄ = x/ε. 2

2The fact that we do not have a square root in defining a stretched variable, as we did for

the Reynolds number in the Prandtl boundary layer, reflects the vast difference in the fluid

equations and the model equation. This however is a relatively unimportant difference.
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Using the stretched variable our equation takes the form

fx̄x̄ + fx̄ = εa. (8.41)

We no consider the limit ε → 0 with 0 ≤ x̄ < B < ∞, obtaining the limiting
equation

fx̄x̄ + fx̄ = 0. (8.42)

This is our model of the Prandtl boundary layer. We require that its solution
vanish at x̄ = 0, so that

finner = C(1 − e−x̄). (8.43)

Here C is an undetermined constant. Note that finner → C as x̄ → ∞, so
that we have the model equivalent of obtaining the “velocity at infinity” for the
viscous boundary layer. Since f is suppose to be represent by fouter away from
x = 0, it is natural to identify C with the limit of fouter for small x. This yields

C = 1 − a. (8.44)

This is usually stated as a matching condition:

lim
x̄→∞

finner = lim
x→0

fouter. (8.45)

An approximation to f(x, ε) which applies to the entire interval can be ob-
tained by adding with inner and outer solutions, provided we account for any
terms that are common to both. The common part in our problem is just 1−a.
We define the approximate composite solution by

fcomp = finner + fouter − 1 + a = ax+ (1 − a)(1 − e−
x

ε ). (8.46)

It is interesting to compare our approximation with the exact solution of the
model problem, namely

f(x, ε) = ax+
(1 − a)

1 − e−
1
ε

(1 − e−
x

ε ). (8.47)

The difference is of order e−
1

ε uniformly over the domain.
Anyone wishing to explore further the use of singular perturbations in fluid

dynamics should consult the book Perturbation Methods in Fluid Mechanics, by
Milton D. Van Dyke. For boundary-layer theory these methods culminated in
an analytical attack on the problem of separation, which we explore briefly in
the final section of this chapter.

8.4 Separation

One of the great accomplishments of 20th century fluid dynamics was an under-
standing of the fundamental mechanisms of separation of a boundary layer in
the limit of large R. This work, due to Stewartson, Williams, Messiter, Neiland,
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Smith, Sychev, Kaplun, and others, led to a full description of the mechanism of
separation in a class of problems of wide applicability. A review of much of the
work on the separation problem may be found in Stewartwon, K., D’Alembert’s

paradox, SIAM Review vol. 23, No. 3, p.308 (1981).

The main result of this effort has been the so-called triple deck theory. The
name applies to the layering of domains of different orders of magnitude, in the
neighborhood of the point of separation. We show the structure of the triple
deck in figure 8.6. The main point to be made in discussing triple deck is that
the layered structure results from a nonlinear interaction between the boundary

layer and the pressure gradient. In other words, separation represents a breaking
of the inner-outer separation of the pressure gradient from the boundary layer
responding to the pressure gradient. Within the triple-deck region the boundary
layer is modifying the pressure gradient, which in turn is affecting the boundary
layer. Entering from the left of the main deck is the profile of the boundary
layer as it has evolved through a length we call L in the figure. Thus the
main deck has thickness LR−1/2. The thinner lower deck is a region where the
full boundary layer equations apply, with viscous stress important and reversal
of the flow occurring following separation. Over a ∆x of order LR−3/8 the
boundary layer is essentially raised by the same order, forming the upper layer.
During this lifting the main deck profile is unchanged by viscosity, since it is
traversing such a small domain. This lifting of the boundary layer modifies the
pressure gradient locally, and this penetrates down to the lower layer, providing
the feeedback that completes the cycle.

Unfortunately this brief description of separation does not do justice to the
analysis involved, nor to the insight that was needed to determine the construc-
tion of the triple deck, nor to the many related questions that have been tackled
with this machinery.
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Problem set 8

2. Verify (8.27) and (8.29).

2. Oseen’s equations are sometimes also proposed as a model of the Navier-
Stokes, equations, in the study of steady viscous flow past a body. Oseen’s
equations, for a flow with velocity (U, 0, 0) at infinity, are

U
∂u

∂x
+

1

ρ
∇p− ν∇2u = 0,∇ · u = 0.

(a) Show that in this model the vorticity is a function of y, z alone.
(b) For the Oseen model, and for a flat plate aligned with the flow, carry

out Prandtl’s simplifications for deriving the boundary-layer equations in two
dimensions, given that the boundary condition of no slip is retained at the body.
That is, find the form of the boundary layer on a flat plate of length L aligned
with the flow at infinity, according to Oseen’s model, and show that in the
boundary layer the the x-component of velocity, u, satisfies

U
∂u

∂x
− ν

∂2u

∂y2
.

What are the boundary conditions on u for the flat-plate problem? Find the

solution, by assuming that u is a function of y
√

U
νx , for 0 < x < L.

(c) Compute the drag coefficient of the plate (drag divided by ρU2L, and
remember there are two sides), in the Oseen model.

3. What are the boundary-layer equations for the boundary-layer on the
front portion of a circular cylinder of radius a, when the free stream velocity is
(−U, 0, 0)? (Use cylindrical polar coordinates). What is the role of the pressure
in the problem? Be sure to include the effect of the pressure as an explicit
function in your momentum equation, the latter being determined by the po-
tential flow past a circular cylinder studied previously. Show that, by defining
x = aθ, ȳ = (r − a)

√
R in the derivation of the boundary-layer equations, the

equations are equivalent to a boundary layer on a flat plate aligned with the
free stream, in rectangular coordinates, but with pressure a given function of x.
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4. For a cylindrical jet emerging from a hole in a plane wall, we have a prob-
lem analogous to the 2D jet considered in class. Consider only the boundary-
layer limit. (a) Show that

∂

∂z
(u2

z) +
1

r

∂

∂r
(ruruz) −

ν

r

∂

∂r
(r
∂uz

∂r
) = 0,

and hence that the momentum M is a constant, where

M = 2πρ

∫ ∞

0

ru2
zdr.

(b) Letting (uz, ur) = (1/r)(ψr,−ψz) where ψ(0, z) = 0 show that we must have
ψ = zf(η), η = r2/z2. Determine the equation for f and thus show that the
boundary-layer limit has the form

f = 4ν
η

η + η0
,

where η0 is a constant. Express η0 in terms of M , the momentum flux of the
jet defined above.

5.consider the Prandtl boundary-layer equations with U(x) = 1/x, so p(x)/ρ =
p∞−1/(2x2). Verify that the similarity solution has the form ψ = f(η), η = y/x.
Find the equation for f . Show that there is no continuously differentiable so-
lution of the equation which satisfies f(0) = f ′(0) = 0 and f ′ → 1, f ′′ → 0 as
η → ∞. (Hint: Obtain an equation for g = f ′.)


