
Chapter 6

Viscosity and the

Navier-Stokes equations

6.1 The Newtonian stress tensor

Generally real fluids are not inviscid or ideal. 1 Modifications of Euler’s equa-
tions, needed to account for real fluid effects at the continuum level, introduce
additional forces in the momentum balance equations. There exists a great va-
riety of real fluids which can be treated at the continuum level, differing in what
we shall call their rheology. Basically the problem is to identify the forces ex-
perienced by a fluid parcel as it is moved about and deformed according to the
mathematical description we have developed. Because of the molecular struc-
ture of various fluid materials, the nature of these forces can vary considerably
and there are many rheological models which attempt to capture the observed
properties of fluids under deformation.

The simplest of these rheologies is the Newtonian viscous fluid. To under-
stand the assumptions let us restrict attention to the determination of a viscous
stress tensor at x, t, which depends only upon the fluid properties within a fluid
parcel at that point and time. One could of course imagine fluids where some
local average over space determines stress at a point. Also it is easy enough to
find fluids with a memory, where the stress at a particular time depends upon
the stress history at the point in question.

It is reasonable to assume that the forces dues to the rheology of the fluid are
developed by the deformation of fluid parcels, and hence could be determined
by the velocity field. If we allow only point properties, deformation of parcels
must involve more than just the velocity itself; first and higher-order partial
derivatives with respect to the spatial coordinates could be important. (The
time derivative of velocity has already been taken into consideration in the
acceleration terms.) A moment’s thought shows viscous forces cannot depend

1In quantum mechanics the superfluid is in many respects an ideal fluid, but the laws

governing vorticity, for example, need to be modified.
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Figure 6.1: Momentum exchange by molecules between lamina in a shear flow.

on velocity. The bulk translation of the fluid with constant velocity produces
no force. Thus the deformation of a small fluid parcel must be responsible for
the viscous force, and the dominant measure of this deformation should come
from the first derivatives of the velocity field, i.e. from the components of the
velocity derivative matrix ∂ui

∂xj
. The Newtonian viscous fluid is one where the

stress tensor is linear in the components of the velocity derivative matrix, with
a stress tensor whose specific form will depend on other physical conditions.

To see why a linear relation of this might capture the dominant rheology
of many fluids consider a flow (u, v) = (u(y), 0).Each different plane or lamina

of fluid, y= constant, moves with a particular velocity. Now consider the two
lamina y = yA, yB as shown in figure 6.1, moving at velocities uB < uA. If a
molecule moves from B to A, then it is moving from an environment with ve-
locity uB to an environment with a larger velocity uA. Consequently it must be
accelerated to match the new velcity. According to Newton, a force is therefore
applied to the lamina y = yA in the direction of negative x. Similarly a molecule
moving from yA to yB must slow down, exerting a force on lamina y = yB in
the direction of positive x. Thus these exchanges of molecules would tend to
reduce the velocity difference between the two lamina. 2

This tendency to reduce the difference in velocities can be thought of as
a force applied to each lamina. Thus if we insert a virtual surface at some
position y, a force should be exerted on the surface, in the positive x direction
if du/dy(y) > 0. Generally we expect the gradients of the velocity components
to vary on a length scale L comparable to some macroscopic scale- the size of
a container, the size of a body around which the fluid flows, etc. On the other
hand the scale of the molecular events envisaged above is very small compared
to the macroscopic scale. Thus it is reasonable to assume that the force on the

2Perhaps a more direct analogy would be two boats gliding along on the water on parallel

paths, one moving faster than the other. If, at the instant they are side by side, an occupant

of the fast boat jumps into the slow boat, the slower boat with speed up, and similarly an

occupant of the slow boat can slow up the fast boat by jumping into it.
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Figure 6.2: Showing why σ12 = σ21. The forces are per unit area. The area of
each face is ∆2.

lamina is dominated by the first derivative,

F (y) = µ
du

dy
. (6.1)

The constant of proportionality, µ, is called the viscosity, and a fluid obeying
this law is called a Newtonian viscous fluid.

We have considered so far only a simple planar flow (u(y), 0). In general all
of the components of the velocity derivative matrix need to be considered in the
construction of the viscous stress tensor. Let us write

σij = −pδij + dij. (6.2)

That is, we have simply split off the pressure contribution and exhibited the
deviatoric stress tensor dij, which contains the viscous stress. We first show that
dij, and hence σij, must be a symmetric tensor. We can do that by considering
figure 6.2. We show a square parcel of fluid of side ∆. We show those forces
on each face which exert a torque about the z-axis. We see that the torque is
∆3(σ21−σ12), since each face has area ∆2 and each of the four forces considered
has a moment of ∆/2 about the z-axis. Now this torque must be balanced by
the angular acceleration of the parcel about the z-axis. Now the moment of
inertial of the parcel is a multiple of ∆4. As ∆ → 0 we see that the angular
acceleration must tend to infinity as ∆−1. It follows that the only way to have
stability of a parcel is for σ21 = σ12. The same argument applies to moments
about the other axes.

A final requirement we shall place on dij, so a further condition on the fluids
we shall study, is that there should be no preferred direction, the condition of
isotropy. The conditions of isotropy of symmetric matrices of second order then
imply that dij can satisfy these while being linear in the components of the
velocity derivative matrix only if it has either of two forms:

∂ui

∂xj
+
∂uj

∂xi
,

∂uk

∂xk
δij . (6.3)
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For a Newtonian fluid the linearity implies that the most general allowable
deviatoric stress has the form

dij = µ
( ∂ui

∂xj
+
∂uj

∂xi
− 2

3

∂uk

∂xk
δij

)

+ µ′
∂uk

∂xk
δij . (6.4)

Notice that we have divided the two terms so that the first term, proportional
to µ, has zero trace. Thus if µ′ = 0, the deviatoric stress contributes nothing to
the normal force on an area element; this is given solely by the pressure force.
The possibility of a normal force distinct from the pressure force is allowed by
the second term of (6.4). We have attached the term viscosity to µ, so µ′ is
usually called the second viscosity. Often it is taken as zero, an approximation
that is generally valid for liquids. The condition µ′ = 0 is equivalent to what is
sometimes called the Stokes relation. In gases in particular µ′ may be positive,
in which case the thermodynamic pressure and the normal stresses are distinct.

It should be noted that if we had simply taken dij to be proportional to
the velocity derivative matrix, then the splitting (3.5) would show that only
eij could possibly appear, since otherwise uniform rotation of the fluid would
produce a force orthogonal to the rotation axis, , which is never observed. The
second term in (6.4) then follows as the only isotropic symmetric tensor linear in
the velocity derivative which could be included as a contribution to “pressure”.

In this course we shall be dealing with two special cases of (6.4). The first
is an incompressible fluid, in which case

σij = −pδij + µ(
∂ui

∂xj
+
∂uj

∂xi

)

, (incompressible fluid). (6.5)

Note that with the incompressibility

∂σij

∂xj
= − ∂p

∂xi
+ µ∇2ui. (6.6)

The second case is compressible flow in one space dimension. Then u =
(u(x, t), 0, 0) and the only non-zero component of the stress tensor is

σ11 = −p+ µ′′
∂u

∂x
, µ′′ =

4

3
µ+ µ′, one − dimensional gas flow. (6.7)

The momentum balance equation in the form

ρ
Dui

Dt
=
∂σij

∂xj
, (6.8)

together with the stress tensor given by (6.4), defines the momentum equation
for the Navier-Stokes equations. These are the most commonly used equations
for the modeling of the rheology of fluids. The have been found to apply to a
wide variety of practical problems, but it is important to realize their limitations.
First, for highly rarified gases the mean free path of molecules of the gas can
become so large that the concept of a fluid parcel, small with respect to the
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macroscopic scale but large with respect to mean free path, becomes untenable.
Also, many common fluids, honey being an example, are non-Newtonian and can
exhibit effects not captured by the Navier-Stokes equations. Finally, whenever
a flow involves very small domains of transition, the Navier-Stokes model may
break down. Example of this occurs in shock waves in gases, where changes
occur over a distance of only several mean free paths, and in the interface
between fluids, which can involve transitions over distances comparable to inter-
molecular scales. In these problems a multi-scale analysis is usually needed,
which can bridge the macroscopic-molecular divide.

Finally, we point out that the viscosities in this model will generally depend
upon temperature, but for simplicity we shall neglect this variation, and in
particular for the incompressible case we always take µ to be constant. Also
we shall often exhibit the kinematic viscosity ν = µ

ρ in place of µ. We remark

that ν has dimensions length2/ time, as can be verified from the momentum
equations after division by ρ.

6.2 Some examples of incompressible viscous flow

We now take the density and viscosity to be constant and consider several exact
solutions of the incompressible Navier-Stokes equations. We shall be dealing
with fixed or moving rigid boundaries and we need the following assumption
regarding the boundary condition on the velocity in the Navier-Stokes model:

Assumption (The non-slip condition): At a rigid boundary the relative mo-
tion of fluid and boundary will vanish.

Thus at a non-moving rigid wall the velocity of the fluid will be zero, while
at any point on a moving boundary the fluid velocity must equal the velocity
of that point of the boundary. This condition is valid for gases and fluids in
situations where the stress tensor is well approximated by (6.4). It can fail in
small domains and in rarified gases, where some slip may occur.

6.2.1 Couette flow

Imagine two rigid planes y = 0, H where the no-slip condition will be applied.
The plane y = H moves in the x-direction with constant velocity U , while the
plane y = 0 is stationary. The flow is steady, so the velocity field must be a
function of y alone. Assuming constant density, u = (u(y), 0) and px = 0 we
obtain a momentum balance if

−µuyy = 0. (6.9)

Thus given that u(0) = 0, u(H) = U , we have u = Uy/H. We see that the
viscous stress is here constant and equal to µU/H . This is the force per unit
area felt by the plane y = 0. No pressure gradient is needed to sustain this stress
field. Couette flow is the simplest exact solution of the Navier-Stokes equations
with non-zero viscous stress.
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Figure 6.3: The velocity in the Rayleigh problem at t=0 mod 2π, y in units of
√

µ/ω.

6.2.2 The Rayleigh problem

A related unsteady problem results from the time dependent motion in the x-
direction with velocity U(t)of the plane y = 0. A no-slip condition is applied
on this plane. A fluid of constant density occupies the semi-infinite domain
y > 0. In this case an exact solution of the Navier-Stokes equations is provided
by u = (u(y, t), 0), p = 0, with

ut − µuyy = 0, u(0) = U(t). (6.10)

In the case U(t) = U0 cosωt we see that u(y, t) = <(eiωtf(y)) where f(y) is the
complex-valued function of y satisfying

iωf − µfyy = 0, f(0) = U0. (6.11)

We shall also require that u(∞) = 0. Thus

u = <U0e
iωt−(1+i)y

√
ω
2ν = U0 cos

(

ωt −
√

ω

2ν
y
)

e−y
√

ω
2ν . (6.12)

We show the velocity field in figure 6.3. Note that the oscillation dies away
extremely rapidly, with barely one reversal before decay is almost complete.
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6.2.3 Poiseuille flow

We consider now a flow in a cylindrical geometry. A Newtonian viscous fluid of
constant density is in steady motion down a cylindrical tube of radius R and of
infinite extent in both directions. Because of viscous stresses at the walls of the
tube, we expect there to be a pressure gradient down the tube. Let the axis of
the tube be the z-axis, r the radial variable, and u = (uz, ur, uθ) = (uz(r), 0, 0)
the velocity field in cylindrical polar coordinates. We note here, for future
reference, the form of the Navier-Stokes equations in these coordinates:

∂uz

∂t
+ u · ∇uz +

1

ρ

∂p

∂z
= ν∇2uz, (6.13)

∂ur

∂t
+ u · ∇ur −

u2
θ

r
+

1

ρ

∂p

∂r
= ν

(

Lur −
2

r2
∂uθ

∂θ

)

, (6.14)

∂uθ

∂t
+ u · ∇uθ +

uruθ

r
+

1

rρ

∂p

∂θ
= ν

(

Luθ +
2

r2
∂ur

∂θ

)

, (6.15)

∂uz

∂z
+

1

r

∂(rur)

∂r
+

1

r

∂uθ

∂θ
= 0. (6.16)

Here

u · ∇ = uz
∂

∂z
+ ur

∂

∂r
+
uθ

r

∂

∂θ
, (6.17)

∇2 =
∂2(·)
∂z2

+
1

r

∂

∂r

(

r
∂(·)
∂r

)

+
1

r2
∂2(·)
∂θ2

, L = ∇2 − 1

r2
. (6.18)

For the problem at hand, we set p = −Gz+ constant to obtain the following
equation for uz(r):

µ∇2uz = −G = µ
(∂2uz

∂r2
+

1

r

∂uz

∂r

)

. (6.19)

The no-slip condition applies at r = R, so the relevant solution of (6.19) is

uz =
G

4µ
(R2 − r2). (6.20)

Thus the velocity profile is parabolic. The total flux down the tube is

Q ≡ 2π

∫ R

0

ruzdr =
πGR4

8µ
. (6.21)

If a tube of length L is subjected to a pressure difference ∆p at the two ends,

then we can expect to drive a total volume flow or flux Q = π∆pR4

8µL down the
tube. The rate W at which work is done to force the fluid down a tube of length
L is the pressure difference between the ends of the tube times the volume flow
rate Q, i.e.

W =
πG2LR4

8µ
(6.22)
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Poiseuille flow can be easily observed in the laboratory, particularly in tubes of
small radius, and measurements of flow rates through small tubes provides one
way of determining a fluid’s viscosity. Of course all tubes are finite, the velocity
profile (6.20) is not established at once when fluid is introduced into a tube.
This entry effect can persist for substantial distances down the tube, depending
on the viscosity and the tube radius, and also on the velocity profile at the
entrance. Another interesting question concerns the stability of Poiseuille flow
in a doubly infinite pipe; this was studied by the engineer Osborne Reynolds in
the 1870’s. He observed instability and transition to turbulence in long tubes.
An application of Poiseuille flow of some importance is to blood flow; and in the
arterial system there are many branches which are too short to escape significant
entry effects.

A generalization of Poiseuille flow to an arbitrary cylinder, bounded by gen-
erators parallel to the z-axis and having a cross section S is easily obtained.
The equation for uz is now

∇2uz =
∂2uz

∂x2
+
∂2uz

∂y2
= −G/µ, uz = 0 on ∂S. (6.23)

The solution is necessarily ≥ 0 for G > 0 and can be found by standard methods
for the inhomogeneous Laplace equation.

6.2.4 Flow down an incline

We consider now the flow of a viscous fluid down an incline, see figure 6.4. The
velocity has the form (u, v, w) = (u(z), 0, 0) and the pressure is a function of z
alone. The fluid is forced down the incline by the gravitational body force. The
equations to be satisfied are

ρg sinα+ µ
d2u

dz2
= 0,

dp

dz
+ ρg cosα = 0. (6.24)

On the free surface z = H the stress must equal the normal stress due
to the constant pressure, p0 say, above the fluid. Thus σxz = ν du

dz = 0 and
σzz = −p = −p0 when z = H . Since the no-slip condition applies, we have
u(0) = 0. Therefore

u =
ρg sinα

2µ
z(2H − z), p = p0 + ρg(H − z) cosα. (6.25)

The volume flow per unit length in the y-direction is

∫ U

0

udz =
gH3 sinα

3ν
. (6.26)
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Figure 6.4: Flow of a viscous fluid down an incline.

6.2.5 Flow with circular streamlines

We consider a velocity field in cylindrical polar coordinates of the form (uz, ur, uθ) =
(0, 0, uθ(r, t)), with p = p(r, t). From (6.13)-(6.18) the equation for uθ is

∂uθ

∂t
= ν

(∂2uθ

∂r2
+

1

r

∂uθ

∂r
− uθ

r2

)

, (6.27)

with the equation
∂r

∂r
=
ρ

r
u2

θ (6.28)

determining the pressure. The vorticity is

ω =
1

r

∂ruθ

∂r
. (6.29)

From (6.27) we then find an equation for the vorticity

∂ω

∂t
= ν

(∂2ω

∂r2
+

1

r

∂ω

∂r

)

= ν∇2ω. (6.30)

This equation, which is the symmetric form of the heat equation in two space
dimensions, may be used to study the decay of a point vortex in two dimensions,
see problem 6.2.

6.2.6 The Burgers vortex

Th implication of (6.30) is that vorticity confined to circular streamlines in two
dimensions will diffuse like heat, never reaching a non-trivial steady state in
R2. We now consider a solution of the Navier-Stokes equations which involves
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a two-dimensional vorticity field ω = (ωz, ωr, ωθ)) = (ω(r), 0, 0). The idea is to
prevent the vorticity from diffusing by placing it in a steady irrotational flow
field of the form (uz, ur, uθ) = (αz,−αr/2, 0). Thus the full velocity field has
the form

(uz, ur, uθ) = (αz,−αr/2, uθ(r, t)). (6.31)

Now the z-component of the vortiity equation is, with (6.31),

∂ω

∂t
− α r

2

∂ω

∂r
− αω = ν

1

r

∂

∂r

(

r
∂ω

∂r

)

, ω =
1

r

∂ruθ

∂r
. (6.32)

First note that if ν = 0, so that there is no diffusion of ω, we my solve the
equation to obtain

ω = eαtF (r2eαt), (6.33)

where F (r2) is the initial value of ω. This solution exhibits the exponential
growth of vorticity coming from the stretching of vortex tubes in the straining
flow (αz,−αr/2, 0).

If now we restore the viscosity, we look for a steady solution of (6.32), repre-
senting a vortex in for which diffusion is balanced by the advection of vorticity
toward the z-axis. We have

1

r

∂

∂r

(α

2
r2ω + νr

∂ω

∂r

)

= 0. (6.34)

Integrating and enforcing the condition2 that r2ω and r ∂ω
∂r vanish when r = ∞,

we have
α

2
rω + ν

dω

dr
= 0. (6.35)

Thus

ω(r) = Ce
−αr2

4ν , (6.36)

so that

uθ =
Γ

2π

1 − e
−αr2

4ν

r
, (6.37)

where we have redefined the constant to exhibit the total circulation of the
vortex. Note that as ν decreases the size of the vortex tubes shrinks. With Γ
fixed this would mean that the vorticity of the tube is increased.

6.2.7 Stagnation-point flow

In this example we attempt to modify the two-dimensional stagnation point
flow with streamfunction UL−1xy to a solution in y > 0 of the Navier-Stokes
equations with constant density, satisfying the no-slip condition on y = 0. The
vorticity will satisfy

u
∂ω

∂x
+ v

∂ω

∂y
− ν

(∂2ω

∂x2
+
∂2ω

∂y2

)

= 0. (6.38)
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Figure 6.5: f ′ versus η for the viscous stagnatioin point flow.

If we set ψ = UL−1xF (y), then ω = −UL−1yF ′′. Insertion in (6.38) gives

F ′F ′′ − FF ′′′ − Re−1F ′′′′, (6.39)

where Re = UL/ν . The boundary conditions are that F (0) = F ′(0) = 0 to
make ψ, u, v vanish on the wall y = 0, and F ∼ y as y → ∞, so that we obtain
the irrotational stagnation point flow at y = ∞.

One integration of (6.39) can be carried out to obtain

F ′2 − FF ′′ −Re−1F ′′′ = 1. (6.40)

With F = Re−1/2f(η), η = Re1/2y, (6.40) becomes

f ′
2 − ff ′′ − f ′′′ = 1, (6.41)

with conditions f ′(∞) = 1, f(0) = f ′(0) = 0. We show in figure 6.5 the solution
f ′(η) of this ODE problem. This represents a gradual transition through a layer
of thickness of order

√

UL/nu between the null velocity on the boundary and
the velocity U(x/L) which u has at the wall in the irrotational stagnation point
flow. We shall be returning to a discussion of such transition layers in chapter
7, where we take up the study of boundary layers.

6.3 Dynamical similarity

In the stagnation point example just considered, the dimensional combination
Re = UL/ν has occurred as a parameter. This parameter, called the Reynolds
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number in honor of Osborne Reynolds, arose because we chose to exhibit the
problem in a dimensionless notation. Consider now the Navier-Stokes equations
with constant density it their dimensional form:

∂u

∂t
+ u · ∇u +

1

ρ
∇p− ν∇2u = 0, ∇ · u = 0. (6.42)

We may define dimensionless (starred) variables as follows:

u∗ = u/U,x∗ = x/L, p∗ = p/ρU2. (6.43)

Here U, L are assumed to be a velocity and length characteristic of the problem
being studied. In the case of flow past a body, L might be a body diameter and
U the flow speed at infinity. In these starred variables it is easily checked that
the equations become

∂u∗

∂t
+ u∗ · ∇∗u∗ + ∇∗p∗ − 1

Re
∇∗2

u∗ = 0, ∇∗ · u∗ = 0. (6.44)

Thus Re survives as the only dimensionless parameter in the equations. For
a given value of Re a given problem will have a solution or solutions which
are fully determined by the value of Re.3 Nevertheless the set of solutions is
fully determined by Re and Re alone. Thus we are able to make a correspon-
dence between various problems having different U and L but the same value of
Re. We call this correspondence dynamical self-similarity. Two flows which are
self-similar in this respect become identical which expressed in the starred, di-
mensionless variables (6.43). In a sense the statement “the viscosity ν is small”
conveys no dynamical information, although the intended implication might be
that Re � 1. If L is also “small”, then it could well be that Re = 1 or e � 1.
The only meaningful way to state that a fluid is “almost inviscid” is through
the Reynolds number, Re � 1. If we want to consider fluids whose viscosity is
dominant compared to inertial forces, we should require Re� 1. These remarks
underline the oft-repeated definition of Re as “the ratio of inertial to viscous
forces”. This is because

ρu · ∇u

µ∇2u
= Re

u∗ · ∇∗u∗

∇∗2u∗
∼ Re (6.45)

since we regard all starred variables as of order unity.
example 6.1: The drag D per unit length of a circular cylinder of radius L

in a two-dimensional uniform flow of speed U must satisfy D = ρU2LF (Re) for
some function F . Note that we are assuming here that cylinders are fully de-
termined by their radius. In experiments other factors, such as surface material
or roughness, slight ellipticity, etc. must be considered.

Problem set 6

3It is not always the case that well-formulated boundary-value problems for the Navier-

Stokes equations have unique solutions. See the example of viscous flow in a diverging channel,

page 79 of Landau an Lifshitz.
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Figure 6.6: Bifurcating Poiseuill flow. Assume a parabolic profile in each section.

1. Consider the following optimzation problem: A Newtonian viscous fluid
of constant density flows through a cylindrical tube of radius R1, which then
bifurcates into two straight tubes of radius R2, see the figure. A volume flow Q
is introduced into the upper tube, which divides into flows of equal flux Q/2 at
the bifurcation. Because of the material composition of the tubes, it is desirable
that the wall stress µdu/dr, evaluated at the wall, be the same in both tubes.
If L and H are given and fixed, what is the angle θ which minimizes the rate of
working required to sustain the flow Q?. Be sure to verify that you have a true
minimum.

2. Look for a solution of (6.30) of the form ω = t−1F (r/
√
t), satisfying

ω(∞, t) = 0, 2π
∫

∞

0
rω(r, t)dr = 1, t >). Show, by computing uθ with uθ(∞, t) =

0, that this represents the decay of a point vortex of unit strength in a vbiscous
fluid, i.e.

lim
t→0+

uθ(r, t) =
1

2πr
, r > 0. (6.46)

3. A Navier-Stokes fluid has constant ρ, µ, no body forces. Consider a motion
in a fixed bounded domain V with no-slip condition on its rigid boundary. Show
that

dE/dt = −Φ, E =

∫

V

ρ|u|2/2dV,Φ = µ

∫

V

(∇× u)2dV.

This shows that for such a fluid kinetic energy is converted into heat at a rate
Φ(t). This last function of time gives the net viscous dissipation for the fluid
contained in V . (Hint: ∇ × (∇ × u) = ∇(∇ · u) − ∇2u. Also ∇ · (A × B) =
∇× A · B−∇× B · A.)
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4. In two dimensions, with streamfunction ψ, where (u, v) = (ψy,−ψx),
show that the incompressible Navier-Stokes equations without body forces for
a fluid of constant ρ, µ reduce to

∂

∂t
∇2ψ − (∂(ψ,∇2ψ)

∂(x, y)
− ν∇4ψ = 0.

In terms of ψ, what are the boundary conditions on a rigid boundary if the
no-slip condition is satisfied there?

5. Find the time-periodic 2D flow in a channel −H < y < H , filled with
viscous incompressible fluid, given that the pressure gradient is dp/dx = A +
B cos(ωt), where A,B, ω are constants. This is an oscillating 2D Poiseuille flow.
You may assume that u(y, t) is even in y and periodic in t with period 2π/ω.

6. verify (6.33).

7. The plane z = 0 is rotating about the z-axis with an angular velocity
Ω. A Newtonian viscous fluid of constant density and viscosity occupies z > 0
and the fluid satisfies the no-slip condition on the plane, i.e. at z = 0 the fluid
rotates with the plane. By centrifugal effect we expect the fluid near the plane
to be thrown out radially and a compensating flow of fluid downward toward
the plane.

Using cylindrical polar coordinates, look for a steady solution of the Navier-
Stokes equations of the form

(uz, ur, uθ) = (f(z), rg(z), rh(z)). (6.47)

We assume that the velocity component uθ vanishes as z → ∞. Show that then

p

ρ
= ν

df

dz
− 1

2
f2 + F, (6.48)

where F is a function of r alone. Now argue that, if h(∞) = 0, i.e. no rotation
at infinity, then F must in fact be a constant. From the r and θ component of
the momentum equation together with ∇ · u = 0, find equations for f, g, h and
justify the following conditions:

f =
df

dz
= 0, h = Ω, z = 0; f ′, h→ 0, z → ∞. (6.49)

(The solution of these equations is discussed on pp. 75-76 of L&L and 290-92
of Batchelor.)


