
Chapter 2

Conservation of mass and

momentum

2.1 Conservation of mass

Every fluid we consider is endowed with a non-negative density, usually denoted
by ρ, which is in the Eulerian setting is a scalar function of x, t. Its unit are mass
per unit volume. Water has a density of about 1 gram per cubic centimeter.
For air the density is about 10−3 grams per cubic centimeter, but of course
pressure and temperature affect air density significantly. The air in a room
of a thousand cubic meters= 109 cubic centimeters weighs about a thousand
kilograms, or more than a ton!

2.1.1 Eulerian form

Let us suppose that mass is being added or subtracted from space as a function
q(x, t), of dimensions mass per unit volume per unit time. The conservation of
mass in a fixed region R can be expressed using (1.20) with f = ρ:

d

dt

∫

R

ρdVx =

∫

R

∂ρ

∂t
dVx +

∫

∂R

ρu · ndSx. (2.1)

Now
d

dt

∫

R

ρdVx =

∫

R

qdVx (2.2)

and if we bring the surface integral in (2.1) back into the volume integral using
the divergence theorem we arrive at

∫

R

[∂ρ

∂t
+ div(uρ) − q

]

dVx = 0. (2.3)

Since our functions are continuous and R is an arbitrary open set in RN , the
integrand in (2.3) must vanish, yielding the conservation of mass equation in
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16 CHAPTER 2. CONSERVATION OF MASS AND MOMENTUM

the Eulerian form:
∂ρ

∂t
+ div(uρ) = q. (2.4)

Note that this last equation can also be written

Dρ

Dt
+ ρdiv u = q. (2.5)

The conservation of mass equation in either of these forms is sometimes called
(for obscure reasons) the equation of continuity.

The form (2.5) shows that the material derivative of the density changes in
two ways, either by sources and sinks of mass q > 0 or q < 0 respectively, or else
by the non-vanishing of the divergence of the velocity field. A positive value of
the divergence, as for u = (x, y, z), is associated with an expansive flow, thereby
reducing local density. This can be examined more closely as follows. Let V be
a small volume of fluid where the density is essentially constant. Then ρV is
the mass within this fluid parcel, which is a material invariant D(ρV )/Dt = 0.
Thus Dρ/Dt + ρV −1DV/Dt = 0. Comparing this with (2.5) we have

div u =
1

V

DV

Dt
. (2.6)

Example 2.1: As we have seen in Chapter 1, an incompressible fluid satis-
fies div u = 0. For such a fluid, free of sources or sinks of mass, we have

Dρ

Dt
= 0, (2.7)

that is, now density becomes a material property. This does not say that the
density is constant everywhere in space, only that is constant at a given fluid
parcel, as it moves about . (Note that we use parcel here to suggest that we
have to average over a small volume to compute the density.) However a fluid of
constant density without mass addition must be incompressible. This difference
is important. Sea water is essentially incompressible but density changes due to
salinity are an important part of the dynamics of the oceans.

2.1.2 Lagrangian form

If q = 0 the Lagrangian form of the conservation of mass is very simple because
if we move with the fluid the density changes that we see are due to expansion
and dilation of the fluid parcel, which is controlled by Det(J). Let a parcel have
volume V0 initially, with essentially constant initial density ρ0. Then the mass
of the parcel is ρ0V0, and is a material invariant. At later times the density is
ρ and the volume is V0Det(J), so conservation of mass is expressed by

DetJ(a, t) =
ρ0

ρ
. (2.8)

If q 6= 0 the Lagrangian conservation of mass must be written

∂

∂t

∣

∣

∣

a

ρDet(J) = Det(J)q(x(a, t), t). (2.9)
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It is easy to get from Eulerian to Lagrangian form using (1.14). Assuming q = 0,

Dρ

Dt
+ ρ div u = 0 =

Dρ

Dt
+ ρ

DDet(J)/Dt

Det(J)
=

1

Det(J)

D

Dt
(ρDet(J)) (2.10)

and the connection is complete.

Example 2.2: Consider, in one dimension, the unsteady velocity field
u(x, t) = 2xt

1+t2
. We assume no sources of sinks of mass, and set ρ(x, 0) = x.

What is the density field at later times, in both Eulerian and Lagrangian forms?
First note that this is a reasonable question, since we have a conservation of
mass equation to evolve the density in time. First deriving the Lagrangian
coordinates, we have

dx

dt
=

2xt

1 + t2
, x(0) = a. (2.11)

The solution is x = a(1 + t2). The Jacobian is then J = 1 + t2. The equation of
conservation of mass in Lagrangian form, given that ρ0(a) = a, is ρ = a/(1+t2).
Since a = x/(1 + t2), the Eulerian form of the density is ρ = x(1 + t2)2. It is
easy to check that this last expression satisfies the Eulerian conservation of mass
equation in one dimension ρt + (ρu)x = 0.

Example 2.3 Consider the two-dimensional stagnation-point flow (u, v) =
(x,−y) with initial density ρ0(x, y) = x2 + y2 and q = 0. The flow is incom-
pressible, so ρ is material. In Lagrangian form, ρ(a, b, t) = a2 + b2. To find ρ
as a function of x, y, t, we note that the Lagrangian coordinates of the flow are
(x, y) = (aet, be−t), and so

ρ(x, y, t) = (xe−t)2 + (yet)2 = x2e−2t + y2e2t. (2.12)

The lines of constant density, which are initially circles centered at the origin,
are flattened into ellipses by the flow.

2.1.3 Another convection identity

Frequently fluid properties are most conveniently thought of as densities per
unit mass rather than per unit volume. If the conservation such a quantity, f
say, is to be examined, we will need to consider ρf to get “f per unit volume”
and so be able to compute total amount by integration over a volume. Consider
then

d

dt

∫

St

ρfdVx =

∫

St

[∂ρf

∂t
+ div(ρfu)

]

dVx. (2.13)

We now assume conservation of mass with q = 0. From the product rule of
differentiation we have div(ρfu) = fdiv(ρu)+ρu·∇f , and so the integrand splits
into a part which vanishes by conservation of mass, and a material derivative of
f time the density:

d

dt

∫

St

ρfdVx =

∫

St

ρ
Df

Dt
dVx. (2.14)

Thus the effect of the multiplier ρ is to turn the derivative of the integral into
an integral of a material derivative.
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2.2 Conservation of momentum in an ideal fluid

The momentum of a fluid is defined to be ρu, per unit volume. Newton’s second
law of motion states that momentum is conserved by a mechanical system of
masses if no forces act on the system. We are thus in a position to use (2.14),
where the “sources and sinks” of momentum are forces.

If F(x, t) is the force acting on the fluid, per unit volume, then we have
immediately (assuming conservation of mass with q = 0),

ρ
Du

Dt
= F. (2.15)

Since we have seen that Du

Dt
is the fluid acceleration, (2.15) states Newton’s Law

that mass times acceleration equals force, in both magnitude and direction.

Of course the Lagrangian form of (2.15) is obtained by replacing the accel-
eration by its Lagrangian counterpart:

ρ
∂2x

∂t2

∣

∣

∣

a

= F. (2.16)

The main issues involved with conservation of momentum are those connected
with the forces which are on a parcel of fluid. There are many possible forces to
consider: pressure, gravity, viscous, surface tension, electromotive, etc. Each has
a physical origin and a mathematical model with a supporting set of observation
and analysis. In the present chapter we consider only an ideal fluid. The only
new fluid variable we will need to introduce is the pressure, a scalar function
p(x, t).

In general the force F appearing in (2.15) is assumed to take the form

Fi = fi +
∂σij

∂xj

. (2.17)

Here f is a body force (exerted from the “outside”), and σ is a second-order
tensor called the stress tensor. Integrated over a region R, the force on the
region is

∫

R

FdVx =

∫

R

fdVx +

∫

∂R

σ · ndSx, (2.18)

using the divergence theorem. We can thus see that the effect of the stress tensor
is to produce a force on the boundary of any fluid parcel, the contribution from
an area element to this force being σijnjdSx for an outward normal n. The
remaining body force f will sometimes be taken to be a uniform gravitational
field f = ρg, where g = constant. On the surface of the earth gravity acts
toward the Earth’s center with a strength g ≈ 980 cm/sec2. We also introduce
a general force potential Φ, such that f = −ρ∇Φ.
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2.2.1 The pressure

An ideal fluid is defined by a stress tensor of the form

σij = −pδij =





−p 0 0
0 −p 0
0 0 −p



 , (2.19)

where δij = i, i = j,= 0 otherwise. Thus when pressure is positive the force
on the surface of a parcel is opposite to the outer normal, as intuition suggests.
Note that now

div σ = −∇p. (2.20)

For a compressible fluid the pressure accounts physically for the resistance
to compression. But pressure persists as a fundamental source of surface forces
for an incompressible fluid, and its physical meaning in the incompressible case
is subtle.1

An ideal fluid with no mass addition and no body force thus satisfies

ρ
Du

Dt
+ ∇p = 0, (2.21)

together with
Dρ

Dt
+ ρdiv u = 0. (2.22)

This system of equation for an ideal fluid are also often referred to as Euler’s

equations. The term Euler flow is also in wide use.
With Euler’s system we have N + 1 equations for the N + 2 unknowns

u1, . . . , uN , ρ, p. Another equation will be needed to complete the system. One
possibility is the incompressible assumption div u = 0. A common option is to
assume constant density. Then ρ is eliminated as an unknown and the conserva-
tion of mass equation is replaced by the incompressibility condition. For gases
the missing relation is an equation of state, which brings in the thermodynamic
properties of the fluid.

The pressure force as we have defined it above is isotropic, in the sense
the pressure is the same independently of the orientation of the area element
on which it acts. A simple two-dimensional diagram will illustrate why this
is so, see figure 2.1. Suppose that the pressure is pi on the face of length Li.
Equating forces, we have p1L1 cos θ = p2L2, p1L1 sin θ = p3L3. But L1 cos θ =
L2, L1 sin θ = L3, so we see that p1 = p2 = p3. So indeed the pressure sensed
by a face does not depend upon the orientation of the face.

2.2.2 Lagrangian form of conservation of momentum

The Lagrangian form of the acceleration has been noted above. The momentum
equation of an ideal fluid requires that we express ∇p as a Lagrangian variable.

1One aspect of the incompressible case should be noted here, namely that the pressure

is arbitrary up to an additive constant. Consequently it is only pressure differences which

matter. This is not the case for a compressible gas.
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Figure 2.1: Isotropicity of pressure.

That is, if p is to be a function of a, t then since ∇ here is actually the x gradient
∇x, we have ∇xp = J−1∇ap. This appearance of the Jacobian is an awkward
feature of Lagrangian fluid dynamics, and is one of the reasons that we shall
emphasize Eulerian variables in discussing the dynamics of a fluid.

2.2.3 Hydrostatics: the Archimedean principle

Hydrostatics is concerned with fluids at rest (u = 0), usually in the presence of
gravity. We consider here only the case of a fluid stratified in one dimension.
To fix the coordinates let the z-axis be vertical up, and g = −giz , where g is a
positive constant. We suppose that the density is a function of z alone. This
allows, for example, a body of water beneath a stratified atmosphere. Let a solid
three-dimensional body (any deformation of a sphere for example) be submerged
in the fluid. Archimedes principle says that the force exerted by the pressure
on the surface of the body is equal to the total weight of the fluid displaced by
the body. We want to establish this principle in the case considered.

Now the pressure satisfies ∇p = −gρ(z)iz . The pressure force is given by
Fpressure = −

∫

pndS taken over the surface of the body. But this surface
pressure is just the same as would be acting on a virtual surface within the
fluid, no body present. Using the divergence theorem, we may convert this to
an integral over the interior of this surface. Of course, there is no fluid within
the body. We are just using the math to evaluate the surface integral. The
result is Fpressure = giz

∫

ρdV . This is a force upward equal to the weight of
the displaced fluid, as stated.

2.3 Steady flow of a fluid of constant density

This special case gives us an opportunity to obtain some useful results rather
easily in a class of problems of some importance. We shall allow a body force of
the form f = −ρ∇Φ, so the momentum equation may be written, after division
by the constant density,

u · ∇u + ρ−1∇p+ ∇Φ = 0. (2.23)

We note now a vector identity which will be useful:

A × (∇× B) + B× (∇× A) + A · ∇B + B · ∇A = ∇(A · B). (2.24)
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Applying this to A = B = u we have

u · ∇u =
1

2
∇|u|2 − u× (∇× u). (2.25)

Using (2.25) in (2.23) we have

∇(ρ−1p+ Φ +
1

2
|u|2) = u× (∇× u). (2.26)

Taking the dot product with u on both sides we obtain

u · ∇(ρ−1p + Φ +
1

2
|u|2) = 0. (2.27)

The famous Bernoulli theorem for steady flows follows:In the steady flow of an

ideal fluid of constant density the quantity H ≡ ρ−1p + Φ + 1

2
|u|2, called the

Bernoulli function, is constant on the streamlines of the flow. The importance
of this result is in the relation it gives us between velocity and pressure. Apart
from the contribution of Φ, the constancy of H implies that an increase of
velocity is accompanied by a decrease of the pressure. This is not an obvious
dynamical consequence of the equations of motion, and it is interesting that we
have derived it without referring to the solenoidal property of u. Recall that
the latter is implied by the constancy of density when there is no mass added
or removed. If we make use of the solenoidal property then, using the identity
∇ · (Aψ) = ψ∇ ·A + A · ∇φ for vector and scaler fields, we see that uH is also
solenoidal, and so the flux of this quantity is conserved in stream tubes. This
vector field arises when conservation of mechanical energy, relating changes in
kinetic energy to the work done by forces, is studied, see problem 2.2.

It is helpful to apply the Bernoulli theorem to flow in a smooth rigid pipe
of circular cross section and slowly varying diameter, with Φ = 0. For an ideal
(frictionless) fluid we may assume that the velocity is approximately constant
over the section, this being reasonable if the slope of the wall of the pipe is small.
The velocity may thus be taken as a scalar function u(x). If the section area is
A(x), then the conservation of mass (and here, volume) implies that uA ≡ Q =

constant, so that ρ−1p + Q2

2
A−2 = constant. If we consider a contraction, as

in figure 2.2., where the area and velocity go from A1, u1 to A2, u2, then the
fluid speeds up to satisfy A1u1 = A2u2 = Q. To achieve this speedup in steady
flow, a force must be acting on the fluid, here a pressure force. Conservation
of momentum states the flux of momentum out minus the flux of momentum
in must equal the pressure force on the fluid in the pipe between section 1
and section 2. Now H = p/ρ+ 1

2
(Q/A)2 is constant, so (if force is positive to

the right) the two ends of the tube give a net pressure force p1A1 − p2A2 =
ρQ2/2(1/A2−1/A1) acting on the fluid. But there is also a pressure force along

the curved part of the tube. This is seen to be
∫ A2

A1

pdA = −
∫ A2

A1

ρ
2
(Q/A)2dA =

ρQ2/2(1/A2−1/A1). These two contributions are equal in our one-dimensional
approximation, and their sum is ρQ2(1/A2 − 1/A1) But the momentum out
minus momentum in is ρ(A2u

2
2 − A1u

2
1) = ρQ2(1/A2 − 1/A1) and is indeed
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Figure 2.2: Steady flow through a contraction.

equal to the net pressure force. Intuitively then, to achieve the speedup of the
fluid necessary to force the fluid through a contraction, and to maintain such a
flow as steady in time, it is necessary to supply a larger pressure at station 1 than
at station 2. Bernoulli’s theorem captures this creation of momentum elegantly,
but ultimately the physics comes down to pressure differences accelerating fluid
parcels.

2.4 Intrinsic coordinates in steady flow

The one-dimensional analysis just given suggests looking briefly at the relations
obtained in an arbitrary steady flow of an ideal fluid using the streamlines a
part of the coordinate system. The resulting intrinsic coordinates are revealing
of the dynamics of fluid parcels. Let t be the unit tangent vector to an oriented
streamline. The we may write u = qt, q = |u|. If s is arclength along the
streamline, then

∂u

∂s
=
∂q

∂s
t + q

∂t

∂s
=
∂q

∂s
t + qκn, (2.28)

where n is the unit normal, κ the streamline curvature, and we have used the
first Frenet-Serret formula. Now the operator u · ∇ is just q ∂

∂s
, and so we have

from (2.28)

u · ∇u = q
∂q

∂s
t + q2κn. (2.29)

This shows that the acceleration in steady flow splits into a component along
the streamline, determined by the variation of q, and a centripetal accelera-
tion associated with streamline curvature. The equations of motion in intrinsic
coordinates (zero body force) are therefore

ρq
∂q

∂s
+
∂p

∂s
= 0, ρκq2 +

∂p

∂n
= 0. (2.30)
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What form does the solenoidal condition take in intrinsic coordinates? We
consider this question in two dimensions. We have

∇ · u = ∇ · (qt) = t · ∇q + q∇ · t =
∂q

∂s
+ q∇ · t. (2.31)

Let us introduce an angle θ so that t(s) = (cos θ(s), sin θ(s)). Then

∇ · t = − sin θ
∂θ

∂x
+ cos θ

∂θ

∂y
= n · ∇θ =

∂θ

∂n
. (2.32)

Since κ = ∂θ
∂s

is the streamline curvature, ∂θ
∂n

, which we write as κn, is the
curvature of the coordinate lines normal to the streamlines. Thus the solenoidal
condition in two dimensions assumes the form

∂q

∂s
+ qκn = 0. (2.33)

2.5 Potential flows with constant density

Another important and very large class of fluid flows are the so-called potential
flows, defined as flows having a velocity field which is the gradient of a scalar
potential, usually denoted by φ:

u = ∇φ. (2.34)

For simplicity we consider here only the case of constant density, but allow a
body force −ρ∇Φ and permit the flow to be unsteady. Since we now also have
that u is solenoidal, it follows that

∇ · ∇φ = ∇2φ = 0. (2.35)

Thus the velocity field is determined by solving Laplace’s equation (2.35)
The momentum equation has not yet been needed, but it necessary in order

to determine the pressure, given u. The momentum equation is

ut + ∇(
1

2
|u|2 + p/ρ+ Φ) = u× (∇× u). (2.36)

Since u = ∇φ we now have ∇× u = 0 and therefore

∇(φt +
1

2
|∇φ|2 + p/ρ+ Φ) = 0, (2.37)

or

φt +
1

2
|∇φ|2 + p/ρ+ Φ = h(t). (2.38)

The arbitrary function h(t) may in fact be set equal to zero; otherwise we
can replace φ by φ −

∫

hdt without affecting u. We see that (2.38) is another
“Bernoulli constant”, this time applicable to any connected region of space
where the potential flow is defined. It allows us to compute the pressure in an
unsteady potential flow, see problem 2.6.
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2.6 Boundary conditions on an ideal fluid

As we have noted, a main physical property of real fluid which is not present for
an ideal fluid is a viscosity. The ideal fluid is“slippery”, in the following sense.
Suppose that adjacent to a solid wall the pressure varies along the wall. The
only force a fluid parcel can experience is a pressure force associated with the
pressure gradient. If the gradient at the wall is tangent to the wall, fluid will
be accelerated and there will have to be a tangential component of velocity at

the wall. This suggests that we cannot place any restriction on the tangential
component of velocity at a rigid fixed boundary of the fluid.

On the other hand, by a rigid fixed wall we mean that fluid is unable to
penetrate the wall, and so we will have to impose the condition n ·u = un = 0 on
the wall. There is a subtlety here connected with our continuum approximation.
It might be though that the fluid cannot penetrate into a rigid wall, but could it
not be possible for the fluid to tear off the wall, forming a free interface next to
an empty cavity? to see that this cannot be the case for smooth pressure fields,
consider the reversed stagnation-point flow (u, v) = (−x, y). On the upper y-
axis we have a Bernoulli function p/ρ+ 1

2
y2. The gradient of pressure along this

line is indeed accelerating the fluid away from the wall, but the fluid remains at
rest at x = y = 0. We cannot really contemplate a pressure force on a particle,
which might cause the particle to leave the wall, only on a parcel. In fact in this
example fluid parcels near the y-axis are being compressed in the x-direction
and stretched in the y-direction.

Thus, the appropriate boundary condition at a fixed rigid wall adjacent to
an ideal fluid is

un = 0 on the wall. (2.39)

For a potential flow, this becomes

∂φ

∂n
= 0 on the wall. (2.40)

We shall find that these conditions at a rigid wall for an ideal fluid are sufficient
to (usually uniquely) determine fluid flows in problems of practical importance.

Another way to express the appropriate boundary condition on a ideal fluid
at a rigid wall is that fluid particles on a wall stay on the wall. This alternative
is attractive because it is also true of a moving rigid wall, where the velocity
component normal to the wall need not vanish at the wall. So what is the
appropriate condition on a moving wall? To obtain this it is convenient to define
the surface as a function of time by the equation Σ(x, t) = 0. For a particle at
position xp(t) to be on the surface means that Σ(xp(t), t) = 0. Differentiating
this expression with respect to time we obtain

∂Σ

∂t

∣

∣

∣

x

+ u · ∇Σ = 0. (2.41)

For example, let a rigid cylinder of radius amove in the x-direction with velocity
U . Then Σ = (x − Ut)2 + y2 − a2, and (??) becomes −2U(x − Ut) + 2(x −
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Ut)u+ 2yv = 0 Evaluating this on the surface of the cylinder, we get

u cos θ + v sin θ = U cos θ = un. (2.42)

We remark that the same reasoning can be applied to the moving interface

between two fluids. This interface may also be regarded as consisting of fluid
particles that remain on the interface. We refer to this generalized boundary
condition at a moving surface as a surface condition.

Finally, as part of this first look at the boundary condition of fluid dynamics,
we should note that for unsteady fluid flows we will sometimes need to prescribe
initial conditions, insuring that the fluid equations may be used to carry the
solution forward in time.

Example 2.4: We consider an example of potential flow past a body in
two dimensions, constant density, no body force. The body is the circular
cylinder r = a, and the fluid “ at infinity” has fixed velocity (U, 0) In two
dimensional polar coordinates, Laplace’s equation has solutions of the form
ln r, (rn, r−n)(cos θ, sin θ), n = 1, 2, . . .. The potential Ur cos θ = Ux has the
correct behavior at infinity, and so we need a decaying solution which will insure
the boundary condition ∂φ

∂r
= 0 when r = a. The correct choice is clearly a

multiple of r−1 cos θ and we obtain

φ = U cos θ(r + a2/r) (2.43)

Note that U cos a2/r is the potential of a flow seen by an observer at rest relative
to the fluid at infinity, when the cylinder moves relative to the fluid with a
velocity (−U, 0). We see that indeed this potential satisfies ∂φ

∂r

∣

∣

r=a
= −U cos θ

as required by (2.42). Streamlines both inside and outside the cylinder are
shown in figure 2.3.

We have found a solution representing the desired flow, but is the solution
unique? Perhaps surprisingly, the answer is no. The reason, associated with the
fluid region being non-simply connected, will be discussed in chapter 4.

Example 2.5 An interesting case of unsteady potential flow occurs with
deep water waves (constant density). The fluid at rest is a liquid in the domain
z < 0 of R3. Gravity acts downward so Φ = −gz. The space above is taken as
having no density and a uniform pressure p0. If the water is disturbed, waves
can form on the surface, which we will assume to be described by a function
z = Z(x, y, t) (no breaking of waves). Under appropriate initial conditions it
turns out that we may assume the liquid velocity to be a potential flow. Thus
our mathematical problem is to solve Laplace’s equation in z < Z(x, y, t) with
a surface condition on φ and a pressure condition pz=Z = p0. For the latter we
can use the Bernoulli theorem for unsteady potential flows, to obtain

p0/ρ =
[

− φt −
1

2
|∇φ|2 + gz

]

z=Z
. (2.44)

The surface condition is D
Dt

(z − Z(x, y, t)) = 0 or

[

z − Zt − uZx − vZy

]

z=Z
= 0. (2.45)



26 CHAPTER 2. CONSERVATION OF MASS AND MOMENTUM

Figure 2.3: Potential flow past a circular cylinder.

The object is to find φ(x, y, z, t), Z(x, y, t), given e.g. that the water is initially
at rest and that the fluid surface is at an initial elevation z = Z0(x, y). We will
consider water waves in more detail in Chapter 9.
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Problem set 2

1. For potential flow over a circular cylinder as discussed in class, with
pressure equal to the constant p∞ at infinity , find the static pressure on surface
of the cylinder as a function of angle from the front stagnation point. (Use
Bernoulli’s theorem.) Evaluate the drag force (the force in the direction of
the flow at infinite which acts on the cylinder), by integrating the pressure
around the boundary. Verify that the drag force vanishes. This is an instance
of D’Alembert’s paradox, the vanishing of drag of bodies in steady potential
flow.

2. For an ideal inviscid fluid of constant density, no gravity, the conservation
of mechanical energy is studied by evaluating the time derivative of total kinetic
energy in the form

d

dt

∫

D

1

2
ρ|u|2dV =

∫

∂D

F · ndS.

Here D is an arbitrary fixed domain with smooth boundary ∂D. What is the
vector F? Interpret the terms of F physically.

3. An open rectangular vessel of water is allowed to slide freely down a
smooth frictionless plane inclined at an angle α to the horizontal, in a uniform
vertical gravitational field of strength g. Find the inclination to the horizontal of
the free surface of the water, given that it is a surface of constant pressure. We
assume the fluid is at rest relative to an observer riding on the vessel. (Consider
the acceleration of the fluid particles in the water and balance this against the
gradient of pressure.)

4. Water (constant density) is to be pumped up a hill (gravity = (0, 0,−g))
through a pipe which tapers from an area A1 at the low point to the smaller
area A2 at a point a vertical distance L higher. What is the pressure p1 at
the bottom, needed to pump at a volume rate Q if the pressure at the top is
the atmospheric value p0? (Express in terms of the given quantities. Assuming
inviscid steady flow, use Bernoulli’s theorem with gravity and conservation of
mass. Assume that the flow velocity is uniform across the tube in computing
fluid flux and pressure.)

5. For a barotropic fluid, pressure is a function of density alone, p = p(ρ).
In this case derive the appropriate form of Bernoulli’s theorem for steady flow
without gravity. If p = kργ where γ, k are positive constants, show that q2 +
2γ

γ−1

p
ρ

is constant on a streamline, where q = |u| is the speed.

6. Water fills a truncated cone as shown in the figure. Gravity acts down (the
direction −z). The pressure at the top surface, of area A2 is zero. The height of
the container is H . At t = 0 the bottom, of area A1 < A2, is abruptly removed
and the water begins to fall out. Note that at time t = 0+ the pressure at the
bottom surface is also zero. The water has not moved but the acceleration is non-
zero. We may assume the resulting motion is a potential flow. Thus the potential
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Figure 2.4: Truncated cone of fluid

φ(z, r, t) in cylindrical polars has the Taylor series φ(r, z, t) = tΦ(r, z) + O(t2),
so dφ/dt = Φ(r, z)+O(t). Using these facts, set up a mathematical problem for
determining the pressure on the inside surface of cone at t = 0+. You should
specify all boundary conditions. You do not have to solve the resulting problem,
but can you guess what the surfaces Φ =constant would look like qualitatively?
What is the force felt at t = 0+ by someone holding the cone, in the limits
A1 → 0 and A1 → A2?


