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Abstract

The question of vortex growth in Euler flows leads naturally to the
emergence of paired vortex structure and the “geometric” stretching of
vortex lines. In the present paper, the first of two papers devoted to this
question, we examine bounds on the growth of vorticity in axisymmet-
ric flow without swirl. We show that the known bound on vorticity in
this case, exponential in time, can be improved for large time by adher-
ing closely to the geometric constraints imposed by the symmetry of the
flow. and the conservation of the support of vorticity. Under appropri-
ate conditions, the vorticity is shown to grow no faster that O(t2). The
kinematic vortex structure used to obtain this bound does not, however,
conserve kinetic energy. If energy conservation is imposed, but not that of
support volume, the bound is reduced to O(t4/3). It appears that optimiz-
ing vorticity conserving both energy and volume will involve filamentary
structures.

We further propose that in the absence of the symmetry of the present
class of flows, conservation of energy should be dropped from the local
analysis of stretching of paired structures having variable stretching rates,
and replaced by conservation of total energy, an idea which is explored
further in the second paper.

1 Introduction and motivation

The question of global regularity of three-dimensional solutions of the incom-
pressible Euler equations continues to be of considerable interest to both math-
ematicians and fluid dynamicists. A recent assessment of the problem from the
analytical viewpoint may be found in [1], see also [2] aand [8]. Numerical studies
have been difficult, occasionally suggestive of finite time singularities, but incon-
clusive. Analytical studies have been highlighted by the key condition of Beale,
Majda, and Kato [3], who showed that if a finite time singularity occurs, the
integral of the maximum modulus of vorticity up to the singularity time must
diverge. (For the proof, other similar conditions, and critical comment see [1].)
Constantin, Fefferman, and Majda [2] subsequently extended the conditions to
the geometry of the vorticity field, and specifically to the direction field of unit
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tangent vectors to vortex lines. Recently Deng et al. [5] have used similar ideas
to argue non-existence of singularities in some of the numerical experiments.

The present paper grew from a study of [1]–[5], and is motivated by several
“working hypotheses” concerning Euler flows. First, the lack of convincing
numerical experiments, as well as physical intuition, suggest that finite time
Euler singularities are rare events in the context of the initial-value problem for
Euler’s equations.

Working hypothesis 1 Almost all Euler flows are free of finite time singular-
ities.

That is, if a suitable measurable space of smooth initial conditions is given,
those initial conditions leading to singularities should constitute a set of measure
zero.1 Should a singular solution exist, if this hypothesis were true, it would be
unimportant physically in that solutions with nearby initial conditions would in
general be free of singularities.

The intuitive reason for this view lies in the non-local nature of the mutual
stretching of vortex lines which seems to be needed in order promote a finite
time blowup. Let vortex element A act on vortex element B so that lines of B
are stretched at a rate proportional to the vorticity at A. The idea is then for
B to do the same to A, so that the time rate of change of vorticity in either
element is proportional to the vorticity squared, leading to blowup of vorticity
like 1/(t∗ − t). We suggest that such a construct, if indeed obtainable, would
be highly unstable to the slightest perturbation of the vortex lines and is likely
to represent a negligible set of Euler flows as suggested above.

However, even rare Euler singularities are worthy of study, and in this paper
we try to understand how vorticity could self stretch optimally in a manner
compatible with the basic fluid dynamics. We postulate that the vortex line
topology needed to attack this problem need not be too complicated:

Working hypothesis 2 The maximal growth rate of vorticity in almost all
Euler flows can be estimated from flows whose vortex lines have a relatively
simple topology, for example, from flows all of whose vortex lines are simple
closed, unlinked loops (unknots).

In [4] it is shown that the direction field of vorticity cannot be too regular
if a finite time singularity occurs. Here we shift the focus, and instead attempt
to estimate the maximum growth achieved in flows of simple topology. We say
a solenoidal field ω0(x) is flow-equivalent to a solenoidal field ωT (x) if there a
positive number T and a solenoidal smooth solenoidal field u(x, t), 0 ≤ t ≤ T
such that the solution ω(x, t) of

ωt + u · ∇ω − ω · ∇u = 0,∇ · ω = 0, 0 ≤ t ≤ T (1)

has the property that ω(x, 0) = ω0(x), ω(x, T ) = ωT (x). That is, the vorticity
fields ω0, ωT are flow equivalent if ωT is reached from ω0 by carrying ω as a

1A simple example of a such a measurable space would be spatially periodic flows with
sufficiently rapid convergence of the Fourier sums.
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‘frozen in” vector field under the action of the flow u. The Lagrangian map
determined by u, 0 ≤ t ≤ T , establishes ωT as the image of ω0 under a diffeo-
morphism. The velocity fields corresponding to these two vorticity fields are
said to be isovortical [6].

The class of initial vorticity fields we propose to explore are those which
are flow equivalent to axisymmetric flow without swirl. Axisymmetric flow
with swirl has often been put forward as candidate for singularities, as has
the related problem of 2D, stratified, incompressible flow under the Boussinesq
approximation , see [1].

Velocity fields which are isovortical to axisymmetric flow without swirl can
have enormous complexity, yet they have the simple topology of our second
hypothesis– every vortex line is a closed loop linking with no other vortex loop.
But it is fair to ask why a simple topology is of any use if the velocity field can
be so complex. In the present paper we shall utilize the topology explicitly in
the rearrangement of vorticity, in the quest for maximal vortex stretching. Re-
arrangments of vorticity can be attempted under varying constraints, kinematic,
dynamical, or energetic, without attempting to solve Euler’s equations exactly,
and this flexibility can be exploited most directly if topological constraints are
eliminated from the outset.

We shall in the present paper focus on the simplest of these flows, namely
axisymmetric flow without swirl itself. Any axisymmetric flow having no swirl
is known to exist globally in time, and a very direct proof of this fact is given
in [1]. We deal here only with flows in R3, and give the proof in detail, since it
is a principal motivator for our work.

The proof utilizes, in a way which will be clear below, two essential facts,
the first for Euler flows in general, the second for axisymmetric flow without
swirl in particular: (1) Since vorticity is a “frozen in” vector field, the volume
of its support is conserved in time. (2) r−1ωθ(x, t) is a material invariant of the
flow, where r = (x2 + y2)1/2 is the cylindrical polar radius. Thus, the vorticity
associated with with any vortex line (ring) at time t, can be directly expressed
in terms of the current radius of the ring, its initial radius, and the initial ωθ.

In these axisymmetric flows without swirl flow the vorticity is (0, 0, ωθ) in
cylindrical polar (z, r, θ) coordinates, and the velocity has the form (uz, ur, 0).
Let the initial vortical field ωθ0(z, r) be smooth, bounded, and and supported
on a region of volume finite V0. It follows that the support of the vorticity at
any future time has volume V0. We further assume |r−1ωθ0(z, r)| < C on its
initial support.

We can then estimate max (|u|) over all space as follows: using the Biot-
Savart representation of the velocity in terms of vorticity,

max (|u|) ≤
∣∣∣ 1
4π

∫

|y|≤R0

y × ω′

y3
dV ′

∣∣∣ +
∣∣∣ 1
4π

∫

|y|≥R0

y × ω′

y3
dV ′

∣∣∣ ,y = x− x′.

(2)
Clearly

max (|u|) ≤ max
supp

(|ωθ(z, r, t)|)[4πR0 + V0R
−2
0 ]. (3)
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If we set R3
0 = V0, we get max (|u|) ≤ c1 maxsupp |ω|, where c1 = (1 + 4π)R0.

Now in this Euler flow

ωθ(z, r, t)/r = ωθ(r0, z0, 0)/r0, (4)

where (z, r) and is the terminal point of a fluid particle which started at (z0, r0).
Now let R(t) be the radius of the support at time t. Then we have

dR/dt ≤ max(u) ≤ c1 max
supp

(ωθ) ≤ Cc1R. (5)

By Grönwall’s lemma, the radius of the support, hence the maximum vorticity,
grows at most exponentially in time.

The proof thus utilizes the conservation of the volume of the support to ex-
tract a bound of velocity in terms of the global maximum of |ωθ| at a fixed time,
thereby obtaining a bound on the maximal rate of expansion of the support;
then the maximum velocity is expressed in terms of the radius of the support
using the material property of r−1ωθ. The latter property is used only at the
end, not in estimating max(u) in terms of the vorticity. The proof thus does
not account for a simple fact about the ultimate fate of an expanding vortex
ring: the only way for the ring to keep expanding is for there to be nearby
vorticity, which can induce the necessary advecting velocity field. However, as
the ring is expanding under the constraint of conservation of volume, necessar-
ily the inducing velocity would have the greatest effect if it were confined to a
toroidal neighborhood of the expanding ring. This leads to a distinctly different
estimate of the ultimate growth rate of vorticity in axisymmetric flow without
swirl, as we shall show below. The exponential estimate can be improved by
more detailed tracking of the material invariant. In seeking to lower the bound
on the growth rate, our interest is in the symmetric flow only as a test case for
the reduction of growth under the addition of constraints.

2 Axisymmetric flow without swirl

Let the initial vorticity have an initial support of volume V0, i.e. the points where
vorticity is non-zero constitute a volume V0. Suppose that −c1 ≤ ωθ(x, 0) ≤ c2
for some positive constants c1, c2, and let the region of the support where ωθ ≥ 0
have volume V0+, that where ωθ < 0 have volume V0− = V0 − V0+. We suppose
that r−1|ωθ(x, 0)| ≤ C.

2.1 Construction of the cocoon with conservation of sup-
port volume

Consider any vortex ring at time t. Taking the z axis as the axis of symmetry,
we may assume the ring has radius r at time t, and lie on the plane z = 0. We
refer to this ring as the core ring. Let V/2 = max(V+0, V0−). It is clear that to
maximize the rate of growth at time t of the ring in question, we can take rings
of negative vorticity ωθ = −Cr distributed over a volume V/2 in z ≥ 0, and
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rings of positive vorticity ωθ = +Cr distributed over a volume V/2 in z ≤ 0.
Note that θ increases counterclockwise looking onto the x, y plane from z > 0,
so by the right-hand-rule a negative ωθ in z > 0 induces a positive ur (and a
negative uz) at the core ring.

Consider now the value of ur induced at the core ring by a ring of radius
ρ and cross-sectional area 2πρdA carrying vorticity −Cρ at height z = ζ > 0.
From the Biot-Savart law one finds

ur(r, 0, t) ≤
Cρ2|ζ|

4π
[ ∫ +π

−π

((r − ρ)2 + 2rρ(1 − cosψ) + ζ2)−3/2dψ
]
dA (6)

Since 1−cosψ ≥ k2ψ2, ; |ψ| ≤ π, k =
√

2/π, we may make this substitution and
carry out the integral with the range extended from [−π,+π] to [−∞,+∞], to
obtain

ur(r, 0, t) ≤
C|ζ|ρ3/2

4
√
r

((r − ρ)2 + ζ2)−1dA (7)

We now want to optimize an arrangement of rings about the core ring which,
by carrying the maximal vorticity of each sign in the appropriate half plane, will
clearly be causing the maximal possible stretching of the core ring, subject only
to the constraint on the volume of the support. The optimal configuration will
be termed the cocoon of the core ring.2 In order to make the variational problem
the most transparent possible, we make a few technical simplifications.

We introduce local polar coordinates in the r, z plane, defined by ρ − r =
R cos Θ, ζ = R sin Θ. Then, since

ur ≤ C| sinΘ|(r +R cos Θ)3/2dRdΘ
4
√
r

≤ C

4
| sinΘ|(r + R cos Θ)(1 + R/r)1/2dRdΘ, (8)

we seek to maximize

U =
∫

A
f(R,Θ)dRdΘ, f =

C

4
| sin Θ|(r +R cos Θ)(1 + R/r)1/2, (9)

subject to the volume constraint

V =
∫

A
g(R,Θ)dRdΘ, g = 2π(r +R cos Θ)R. (10)

Here A is a set to be determined. We may assume by symmetry that A is mirror
symmetric in the plane z = 0, since the vorticity field of the cocoon is odd in
z. Also, we may assume that the core ring radius is as large as we like when we
begin the tracking of the cocoon, since otherwise vorticity is bounded by a fixed
constant for all time. In addition, we need the following preliminary result:

2I thank Peter Constantin for suggesting this descriptive term. I am also in-
debted to the class of the Spring 2004 Fluid Dynamics class at the Courant Insti-
tute, who patiently endured an unexpected foray into topological fluid dynamics, where
some of the ideas presented here were developed. The lecture notes are available at
http://www.math.nyu.edu/faculty/childres/fluids22004.html.
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Lemma 1 We may assume that the half A− of A in z ≥ 0 is a region of the
form 0 ≤ R ≤ R(Θ), 0 ≤ Θ ≤ π. That is, the region can be assumed to be
starlike with respect to the core ring.

To show this, suppose that Θ is fixed and note that the intersection of A
with the ray determined by Θ determines a set function φ(R) equal to 1 in A
and otherwise 0. Consider then two choices of φ, either φ1 : 0 ≤ R ≤ R, or else
a set of disjoint intervals φ2, such that

∫ ∞

0

φ2gdR =
∫ ∞

0

φ1gdR. (11)

We then want to show that
∫ ∞

0

φ2fdR >

∫ ∞

0

φ1fdR. (12)

But this follows immediately from the fact that f, g are positive functions on the
support of φ1,2 and that and f/g is a positive multiple of a decreasing function
of R, namely (1/R2 + 1/(Rr))1/2.

Using the lemma, and the mirro symmetry of the cocoon, we may formulate
the optimization problem as the variational problem for the boundary R(Θ), 0 ≤
Θ ≤ π, given by

δ

∫ π

0

∫ R

0

(
f(R,Θ) − λg(R,Θ)

)
dRΘ, (13)

with scalar multiplier λ.
The extremal of this variational problem, R(θ, satisfies

(r + R cos Θ)
(
K sin Θ

√
1 + R/r −R/r

)
= 0, (14)

where K = C
8πλr

. If r is sufficiently large, r + R cos Θ) stays nonnegative and
the unique extremal is

R(Θ) = r

√

K2 sin2 Θ +
K4 sin4 Θ

4
+
K2 sin2 Θ

2
, (15)

The variational equation R2 = r2K2 sin2 Θ(1 + R/r) yields the volume con-
straint which determines K:

V = 2πr3
∫ π

0

K2 sin2 Θ(1 + R(Θ)/r)dΘ. (16)

Now in view of (15) we see min0<Θ<π r+R cos Θ ceases to be positive when
Let us introduce a length L such that V = 2πL3. Then the integral (16)

defines a function K(r∗), where r∗ = r/L. From (15) and the calcul.ated
values of K(r∗) we find that min0<Θ<π r + R cos Θ ceases to be positive when
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r∗ < .5177 approximately We thus obtain, taking into account both mirror-
symmetric halves of the cocoon, for r∗ > .5177, the differential inequality

dr∗
dt

≤ supU ≤
CLr∗2

3

∫ π

0

sinΘ
[(

1 +
R
r

)3/2 − 1
]
dΘ ≡

CLr∗2

3
U(r∗), (17)

where we define the function U(r∗). We show this relation in figure 1, along
with the cocoons at various values of r/L.

Figure 1. Top: 3
CL2

dr
dt (as defined by (17)) versus r/L. Bottom: Cocoon

shape for various position of the core ring. The cocoon is mirror symmetric with
respect to the r/L line.

From the behavior for large r/L (or smallK), we obtain from (16)K ∼
√

V
πr3/2 ,

and from (17) dr/dt ≤ CKπr2

4 , yielding the estimate

dr

dt
≤ C

4

√
V r, r → ∞. (18)

Thus d
√
r/dt ∼≤ C

8

√
V for large r. With |ωθ(r, z, t)| ≤ Cr we obtain the

following result:
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Theorem 1 For axisymmetric flow with initial support volume V and initial
vorticity satisfying |ωθ/r| ≤ C, there is a constant C1 depending only upon V,C
such that

sup |ωθ| ≤ C(
C

8

√
V t+ C1)2. (19)

Thus vorticity grows no faster than O(t2) for large time.

To establish the theorem, we may assume that at time t = 0 the core ring
is at a position such that the cocoon satisfies min0≤Θ≤π [r+R cos Θ] ≥ 0. Thus
dr/dt is bounded by the curve shown at the top of figure 1, with the asymptotic
behavior given by (18), and the theorem follows.

2.2 Remarks

We note first that the factor C/8 in (19) maybe replaced by C/(4π). This is
because if only the case r � |r− ρ| is considered for (6), the factor 2(1− cosψ)
in the integrad may be rplaced by ψ2 and the integration extended to −∞,+∞,
effectively inserting a factor 2/π.

While the construction of the cocoon is based upon geometric constraints as-
sociated with Euler flows, it is a local construction (in time) which has no direct
relation to the evolution of the flow. Thus, for example, the core ring is here a
“test ring” whose expansion rate in r is maximized. In the construction, cocoon
vorticity is in fact placed at larger values of r. In practice the most rapidly
growing ring would leave vorticity behind, and there would be a arrangement
of rings which expanding at a rate well below our upper bound.

This can be illustrated by adapting a well-known example of a propagating
vortex dipole, namely the 2D vortex structure described by Batchelor [7]. The
vorticity is contained within the circle r = a, and is given by ω = −Ak2J1(kρ) sin θ,
where A is an arbitrary constant, and J1(ak) = 0. Here (ρ, θ) are local po-
lar coordinates. We take the smallest ak satisfying the last condition, namely
ak = 3.83 approximately, to obtain one sign of vorticity in each half-plane. On
r = a the velocity is the same as for irrotational flow past a circular cylinder,
provided that the cylinder moves with speed U = −1

2AkJ0(ka).
We now take this flow as that of any cross section of a slender toroidal ring,

see figure 2. As the ring expands, a must diminish to conserve volume, but we
may consider this as a a more closer than our cocoon to realizing an Euler flow.
Now 2πr · πa2 = V

C =
Ak2

r
max

0≤ρ≤a
|J1(kρ)|. (20)

From these relations and the properties of the Bessel functions J0, J1 we obtain

U ≈ .02C
√

(V r), (21)

the factor .02 is indeed well below the the 1/(2π) in our bound.
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Figure 3. Expanding vortex structure yields the t2 behavior.

The cocoon based upon conservation of support of vorticity (as well as the
toroidal ring construction just described) is deficient in another important as-
pect, namely it does not conserve the kinetic energy of the flow. Thus it cannot
be sharp for Euler flows.

To see this, recall that the kinetic energy of an axisymmetric vortical field
in R3 in a flow without swirl can be expressed in terms of vorticity in the form

E0 =
ρ

8π

∫

V

∫

V ′
|r− r′|−1ωθω

′
θiθ · iθ′dV dV ′. (22)

This can be expressed in cylindrical polar coordinates as

E0 =
−ρ
8π

∫

V

∫

V ′
ωθω

′
θ cosψ|(r+r′))2−4rr′ sin2(ψ/2)+(z−z′)2|−1/2r′dr′dθ′dz′rdrdθdz,

(23)
where ψ = θ − θ′. When r, r′ � |r − r′| the integral with respect to θ′ may be
evaluated approximately as a complete elliptic integral, yielding

E0 ≈ ρ

2

∫

V

∫

V ′
rωθω

′
θ log

64r2

(r − r′)2 + (z − z′)2
dr′dz′drdz. (24)

We now study a configuration for our cocoon, where vorticity is −Cr in the
upper half-plane, and +Cr negative in the lower. Then

E0 ≈ ρC2r3

2

∫

A0

∫

A′
0

sgn(zz′) log
64r2

(r − r′)2 + (z − z′)2
drdzdr′dz′. (25)

Assuming now that the support of vorticity is an even function of z, wee see that
the contribution log64r2 from the integrand will not contribute. As r → ∞,
the linear dimension of the cocoon cross section shrinks by the factor r−1/2, so
we see that E0 grows linearly in r.

It is natural then, to seek to improve (19) by adding the constraint of con-
servation of energy to the cocoon construction. We shall argue below that for
the construction used above, where vorticity is replaced by its upper bound,
and the cocoon has piecewise constant ωθ/r, that this leads to degenerate co-
coons with infinitesimal concentrations of vorticity which carry no energy. We
shall refer to these concentrations as filaments This suggests that, at least in
axisymmetric flow without swirl which in fact consists of domains where ωθ/r is
piecewise constant, the largest vorticity for large time is found in regular struc-
tures which conserve energy but not the support of vorticity. We will eventually
be guided by this result in addressing all Euler flows isovortical to axisymmetric
flow without swirl, and so introduce

Working hypothesis 3 An improved bound of vorticity, relative to that for
the cocoon of invariant support, is obtained by the cocoon of invariant kinetic
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energy. This cocoon may be extended so as to also conserve the support of
vorticity, either by the addition of filamentary vorticity, or else by extending the
admissible vortical fields. In the case of axisymmetric flow without swirl, this
would be accomplished by allowing vortical distributions with non-constant ωθ/r.

The remainder of this paper is devoted to investigating these issue. We shall
not attempt the same level of rigor as we sought in the construction of the co-
coon conserving support. We may assume that r becomes as large as we want
and therefore we may restrict attention to r � L where the cocoon construc-
tion involves a thin toroidal structure. For axisymmetric flow without swirl and
cocoons of piecewise constant ωθ/r, we will first determine the regular cocoon
conserving energy, then indicate the filamented extension which conserves sup-
port as well. Finally we shall argue for the validity of this extremal from upon
a model problem based upon a thin-sheet approximation.

2.3 The cocoon which conserves energy

While the support of vorticity is independent of the magnitude of the vorticity
on each ring, the energy is not, and we first argue that the cocoon may again be
constructed by considering a structure with vorticity ±Cr. Let us first suppose
that a cocoon has been found which maximizes U for a fixed energy initial E0,
with |ωθ| ≤ rC. This extremal maximizes Ur3/2/

√
E/ρ. If, at the optimum,

vortex rings in z > 0 carry vorticity −Cr and those in z < 0 have −Cr, then we
call E0 = Ec the cocoon energy. Otherwise, the value of U so obtained will be
smaller than that obtained by assigning vorticity −Cr to every ring above the
core ring, and +Cr to every ring below the core ring. This new structure will
have a larger energy than E0, since the previous distribution was optimal, and
this now defines the cocoon energy Ec. The cocoon energy will be conserved in
the dependence of the cocoon upon r. This is because once r � V 1/3 the cocoon
is defined locally and shrinks through self-similar structure, being simply scaled
down by the linear factor r−3/4 as r increases.

Now this new U is bounded above by that value obtained by maximizing U
subject to E = Ec and vorticity ±Cr. That is, this last optimization replaces
the boundary of the first extremal by a new one. For this latter construction we
are essentially returned to the construction with fixed support, only that now
energy of the system replaces volume as the conserved quantity. The energy
involved is now cocoon energy, which is larger in general than physical energy.

We now claim that a the result analogous to lemma 1, allowing the admissi-
ble cocoons of the form R = R(θ), holds under energy conservation. The proof
compares small vorticity elements in the local cocoon cross section. Let a small
element dA of the cross section be located at (R1, θ), and a second element,
mirror symmetric with respect to z = 0 with the first be selected at (R1,−θ).
Now let these elements be moved to (R2, θ) and (R2,−θ) respectively, where
R2 < R1. The positive“self-energy” of the two elements is unchanged by this
shift, but the “interaction energy”, which is here negative owing to the signs of
the vorticity, is enhance, i.e. becomes more negative, since logR−1

2 > logR−1
1 .
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Consequently, to maximize Ur3/2√
E/ρ

subject to E = Ec we may assume the geom-

etry of the lemma.
Our variational problem is thus to maximize, by varying the boundary R(θ),

rC

4

∫ 2π

0

| sin θ|R(θ)dθ, (26)

subject to a fixed cocoon energy Ec. The Euler-Lagrange equation is thus found
to be

rC

4
| sin θ| + ν

2
C2r3R(θ)

∫ 2π

0

sgn(sinφ)F(R(θ), R(φ), θ − φ)dφ, (27)

where

F(x, y, ψ) =
1
2
y2 log(x2 + y2 − 2xy cosψ) − xy cosψ − 1

2
y2

−1
2
x2 cos 2ψ log

x2 + y2 − 2xy cosψ
x2

+ x2 sin 2ψ tan−1
(y − x cosψ

x sinψ

)

+x2 sin 2ψ tan−1(cotψ) (28)

Here ν is the Lagrange multiplier. We may write this as

| sin θ| + b

∫ 2π

0

sgn(sinφ)F(R(θ), R(φ), θ − φ)dφ, (29)

where b is a new multiplier. We may make a substitution R → AR where A is
chosen to make R(π/2) = 1. (Note that the contributions from the logarithm
vanish. We solved the resulting system for R(θ using the MATLAB routine
FSOLVE, assuming symmetry in both the horizontal and the vertical. The
result is shown in Figure 3.

Figure 3. The upper boundary of the optimal vortex configuration.
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Computing the energy for this system as E0 = ρC3r
4
A4IE , and U = rCA

4
IU ,

we find IE ≈ 4.24 and IU ≈ 3.77 giving

U ≈ .93(Ec/ρ)1/4
√
C r1/4. (30)

Thus we are lead to propose

Theorem 2 The cocoon which conserves kinetic energy yields the improved
bound for axisymmetric flow without swirl, for large t, given by

max |ωθ| ≤ C(C1
Ec

ρ

1/4√
Ct+ C2)4/3, (31)

where C1 ≈ .7.

The cocoon energy is defined here by an imagined optimization problem.
An acceptable value of Ec, insuring the bound of theorem 2 can be found by
simply computing the energy of the support-conserving cocoon at some value
of r for which the latter is defined. Since this cocoon is found by a different
optimization problem, the energy so obtained will in general be larger than the
optimal cocoon energy.

2.4 The filamented cocoon

Since the linear dimension of the cocoon cross section now goes as r−3/4, thereby
conserving energy, the vorticity support volume decreases with r like r−1/2. This
missing vorticity is not accounted for in the cocoon construction at fixed energy.

The natural next step is therefore to constrain the cocoon by both support
volume and energy. However, we propose here (and this is the motivation for
our third working hypothesis) that this doubly constrained cocoon does not
yield a better bound that the cocoon conserving energy alone. The reason is
that as r → ∞, vorticity carrying O(1) support volume but zero energy can be
deposited in rings arbitrarily close to the plane z = 0 containing the core ring.
That is to say, in the limit of large r the doubly constrained cocoon is unique, in
the sense that arbitrarily nearby bounds are obtained by many extremal, which
differ only in the vorticity arbitrarily close to the plane z = 0.

This description must be viewed as asymptotic for large r. A significant frac-
tion of the volume (and energy!) can be “left behind” as the energy-conserving
cocoon expands. An example of a filamented is an energy-constrained cocoon
having volume Kcr

−1/2 plus the following vorticity distribution: Let r = rc be
the radius of the core ring. Then for r1 < r < rc − kr

−3/4
c

ωθ =
{
−Cr, for 0 < z < 1

8πKcr
−5/2,

+Cr, for − 1
8π
Kcr

−5/2 < z < 0.
(32)

Here k is a constant yielding the left intersection of the cocoon with the plane
z = 0. The cocoon volume is Vc satisfies dVc/dt = −1

2
Kcr

−3/2
c drc/dt. The

flux of volume aft of the cocoon is then −2πrcHdrc/dt where H is the filament
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thickness, see Figure 4. Equating these we get H = O(r−5/2). Then volume
it then being added to the filament at the rate it is being lost by the cocoon.
The filament contributes negligibly to both U and to the cocoon energy, so the
estimate of theorem 2 remains.

Figure 4. Example of a filamented cocoon with lost support volume extend-
ing aft of a cocoon advancing to the right.

2.5 A doubly constrained cocoon in a thin-layer model

The doubly-constrained cocoon is difficult to analyze explicitly in axisymmetric
flow without swirl. In the present section we introduce a model where it can
be treated fairly directly. The model depends upon the adoption of a thin-layer
approximation. This approximation is distinct from thin-layer Euler dynamics,
which is equivalent to an inviscid version of Prandtl’s boundary-layer equations.
Rather, we regard the layer as geometrically thin for the purpose of construction
of the cocoon and calculation of the energy, but otherwise disregard thinness,
in particular in the calculation of U . We shall see below that an optimal cocoon
constructed within the model is not geometrically thin, so the model is not
consistent as an asymptotic theory. It is simply a model problem where the
dual constraints of volume and energy can be studied simultaneously.

We shall consider only the asymptotic cocoon for large r, so the analysis is
local and two-dimensional. We show in the appendix that if ωθ/r = −C in the
2D layer 0 < y < Y (x), where −L < x < L (we assume symmetry with respect
to x = 0), and equals C in the layer obtained by reflection in y = 0, then the
energy of thin year is given approximately by

Ec =
2πρC2r3

3

∫ L

−L

Y 3(x)dx. (33)
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For the thin layer our volume constraint is now

V0 = 4πr
∫ L

−L

Y (x)dx, (34)

and we wish to maximize

U =
Cr

4

∫ L

−L

log
[x2 + Y 2

x2

]
dx. (35)

We first consider maximization of U subject only to the energy constraint,
disregarding the volume constraint. Variation of y1, y2 separately yields the
Euler-Lagrange equations

Y

x2 + Y 2
= bY 2, (36)

where b is a multiplier. We now represent the cocoon boundary as x ± X(y)
where

X(y) =
√
b−1y−1 − y2, 0 < y < b−1/3. (37)

Thus L = ∞. To satisfy the energy constraint we note that now

Ec = 2πρC2r3
∫

A0/2

y2dxdy = πρC2r3
∫ b−1/3

0

y2X(y)dy

= πb−4/3ρC2r3IE , IE =
∫ 1

0

z3/2
√

1 − z3dz ≈ .28. (38)

Thus the constraint is satisfied by making b proportional to r9/4. This implies
that the vortical domain is actually O(r−3/4) × O(r−3/4) in dimension. This
does not define a thin domain, so the result is not consistent with the slenderness
we built into the model. This result is however entirely analogous to that of
section 3.

We note that for this extremal

U =
Crb−1/3

2
IU , IU =

∫ 1

0

tan−1(z−3/2
√

1 − z3)dz ≈ 1.12. (39)

Eliminating b from the expressions for E0 and U ,

U = 2−1(2π)−1/4(Ec/ρ)1/4
√
CIUI

−1/4
E r1/4 ≈ .49(Ec/ρ)1/4

√
C r1/4. (40)

Thus we again get a bound on vorticity as in theorem 2.
We next consider constraints on both volume and energy, leading to the

equation

Y

x2 + Y 2
= a+ bY 2, (41)

involving the additional multiplier a. We want to show that the acceptable Y
so defined cannot satisfy both energy and volume constraints simultaneously.
We now have
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X(y) =
√
y/(a + by2) − y2. (42)

Here a, b > 0 and 0 < y < ym where ym is the unique positive zero of X(y). We
then have

V0 = 8πrb−2/3

∫ zm(λ)

0

√
z/(λ+ z2) − z2dz, (43)

Ec = 4πρC2r3b−4/3

∫ zm(λ)

0

z2
√
z/(λ + z2) − z2dz, (44)

where zm = ymb
1/3ym and λ = ab−1/3. For large r and fixed E0, V0, λ, we see

that we cannot choose λ, b to satisfy both constraints. The same conclusion is
reached when λ is taken as small or large compared to 1. We conclude that we
do not find an acceptable extremal preserving both volume and energy.

Again, volume conservation can be viewed as satisfied by filaments which
are extensions of either or both of the “tails” of the cocoon.

3 Concluding remarks

By focusing here on the case of axisymmetric flow without swirl, we can see in
rather simple terms how the geometrical constraints play a role in estimations
of the growth of vorticity in Euler flows. The high degree of symmetry in this
case imposes restrictions not present in 3D flows generally. In particular the
kinematic cocoon is of constant volume is unable to conserve its kinetic energy.
One could imagine a situation where the energy would be exchanged between
different vortex structures, but this approach defeats the search for coherent
vortex configurations producing singularities.

Once one breaks the constraints of the symmetric flow, however, conser-
vation of energy in a local sense become less of a factor, since energy can be
transferred along the line of the cocoon. If, for some reason, it turned out
that axisymmetric flow without swirl allowed Euler blow-up, then necessarily
the blow-up would produce infinite vorticity on an entire ring. In paper II we
consider the possibility of a point singularity using a “dynamic” cocoon derived
from Euler’s equations.

A Energy in a thin layer

We first consider the energy expression needed in the cocoon appropriate to
axisymmetric flow without swirl.

We shall establish the form of the energy in two ways, for a more general
cocoon of the form 0 < y1(x) < y < y2(x). We shall show that the cocoon
energy is then given by

Ec =
πρC2r3

3

∫ L

−L

(y2 − y1)2(2y1 + y2)dx. (45)
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We First we note that

Ec =
ρC2r3

2

∫

A0/2

∫

A′
0/2

log
(x− x′)2 + (y + y′)2

(x− x′)2 + (y − y′)2
dydzdx′dy′ (46)

Since y, y′ are confined to a thin layer, the x, x′ integrations may be computed
locally. Using

∫
log(x2 + y2)dx = x log(x2 + y2) − 2x+ 2y tan−1(x/y) (47)

we obtain

Ec =
ρC2r3

2

∫ L

−L

∫ y2

y1

∫ y2

y1

K(y, y′)dydy′dx, (48)

where

K(y, y′) =
{

2πy′ if y > y′,
2πy if y < y′.

(49)

We thus obtain (45).
A second derivation makes use of thin layer approximations in solving a

Poisson problem. We note that

Ec = ρπC2r3
∫

A0/2

φ(x, y)dxdy (50)

where

φyy ≈
{
−1 if y1 < y < y2,−L < x < L,
+1 if −y2 < y < −y1,−L < x < L. (51)

We require that both φ and φy be continuous at ±y1, and that φy = 0 at
y = y2. The last condition insures that the solution within the layer matches to
an external harmonic field.

The solution of the Poisson problem is easily seen to be, for y1 < y < y2,

φ = −1
2
y2 + y2y −

1
2
y2
1. (52)

Integrating over A0/2 again yields (45).
We remark that if y2 − y1 is held fixed as a function of the x, the energy is

minimized by setting y1=0, confirming in the thin-layer model the assertion of
section 3 that the optimal cocoon under the energy constraint is starlike with
respect to the core ring.

Next, suppose that vorticity is confined to a thin layer 0 < z < H(x, y)
ajacent to z = 0 and there has the form (ωx, ωyωz) = (ξ(x, y), η(x, y),−z(ξx +
ηy)). From the form of (22) we see that

E = ρ

∫
ω ·BdV, ∇2B = −1

2
ω. (53)
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Using the second method described above, we see that in a thin layer

B ≈ (H(x, y)z − 1
2
z2)(ξ(x.y), η(x, y), 0), (54)

where we neglect terms which are o(1) in H/L, where L is the scale of variation
of ξ, η.

We thus see that to first order

E =
ρ

6

∫ ∫
(ξ2 + η2)H3dxdy. (55)
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