1. Verify from the integral that $\Gamma(1 / 2)=\left(-\frac{1}{2}\right)!=\sqrt{\pi}$. Using only the analytic continuation of Γ following from $\Gamma(z+1)=z \Gamma(z)$, show that

$$
\left(\frac{1}{2}\right)!=\frac{1}{2} \sqrt{\pi},\left(\frac{3}{2}\right)!=\frac{3}{2} \frac{1}{2} \sqrt{\pi},\left(-\frac{3}{2}\right)!=-2 \sqrt{\pi},\left(-\frac{5}{2}\right)!=\frac{4}{3} \sqrt{\pi}
$$

2. (a) Show that the residue of $\Gamma(z)$ at $z=-n$ is $(-1)^{n} / n$!.
(b) Show from the representation given in equation (97) where C is the contour in figure 3(a) of the lecture notes that if $\operatorname{Re} z>0$ then we obtain

$$
\Gamma(1+z)=\int_{0}^{\infty} t^{z} e^{-t} d t
$$

and in particlar $\Gamma(n+1)=n$! at the positive integers.
3. Show, by taking a contour as shown in the figure, that, if $|\operatorname{Re} z|<1$, then

$$
\int_{0}^{\infty} \frac{u^{z}}{(1+u)^{2}} d u=\frac{\pi z}{\sin \pi z}
$$

Be sure to estimate the integral over $|z|=R$.

4. From equation (105) of the lecture notes with $u=v=z$ we have, if $\operatorname{Re} z>-1$,

$$
\frac{z!z!}{(2 z+1)!}=\int_{0}^{1} t^{z}(1-t)^{z} d t \quad(*)
$$

(a) Using the substitutions $2 t=1+s$ and $u=s^{2}$ show that the integral on the right of $(*)$ may be written $2^{-2 z-1} \int_{0}^{1}(1-u)^{z} u^{-1 / 2} d u$.
(b) Using equation (105) on the last result and simplifying, show that

$$
z!(z-1 / 2)!=2^{-2 z-1} \sqrt{\pi}(2 z)!
$$

provided that $\operatorname{Re} z>-\frac{1}{2}$.
5. If z is not a negative integer, show that the infinite series

$$
\sum_{m=1}^{\infty} R_{m}, R_{m}=\left[z \log \frac{m+1}{m}-\log \frac{m+z}{m}\right]
$$

is absolutely convergent. (Hint: expand the logs in series and show that $\left|R_{m}\right|=O\left(m^{-2}\right), m \rightarrow \infty$.)
6. Compute $\zeta(-3)$ from the extension given by equation (130) of the notes.

